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A. Survey Design and Sample Details 

This appendix details the survey's design and pre-registration process, outlining the 

methodologies and strategies implemented. 

 

A.1. Project Pre-registration 

Using the Center for Open Science’s Open Science Framework, we pre-registered our 

project six times as we prepared to collect the survey data and conduct the analyses for this 

paper. (We describe these plans as “pre-registrations” since they were created before most or all 

of the data were collected.) These pre-registrations can be found on our project page using this 

link (which is view-only, with anonymized contributor names): 

https://osf.io/qk5ta/?view_only=c2c05eb8d51d4c088c363db7a26d2f15. 

• We submitted the first two pre-registrations before we collected data on a pilot version of 

the Baseline survey in 2020 (Registration 1, 4/8/2020; Registration 2, 7/24/2020). The 

https://osf.io/qk5ta/?view_only=c2c05eb8d51d4c088c363db7a26d2f15
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pilot survey was our first test for interpersonal differences in general scale use using 

SWB responses from 0 (“lowest level possible”) to 100 (“highest level possible”) and 

calibration questions on that scale. To learn about response error, we also fielded a test-

retest version of the entire pilot survey, identical to the original, about two weeks1 later. 

In this paper, the pilot data are only used for the analysis in Appendix I.1, to correct two 

of the slope coefficients (height and weight) for response error in a regression of 

subjective measures on objective ones. 

• We submitted the next two pre-registrations before we collected the part of the Baseline 

survey data used for this paper that did not include a Prescreening survey (Registration 3, 

5/18/22; Registration 4, 6/10/22).  

• We submitted the next pre-registration (Registration 5, 7/18/22) before our first attempt 

at a Prescreening survey. (See A.3.ii. for a description of the Prescreening survey as 

finally implemented.) We began by fielding a small sample of 18 respondents. (When we 

field a new survey, we typically start with a small sample to make sure there is no error in 

the survey code or data collection process.) When we checked the data, we found that the 

Prescreening survey included a question that respondents did not interpret as we 

intended, and we decided to cut that question from the survey.2 Instead of pooling data 

between two versions of the Prescreening survey, we opted not to follow up with those 18 

respondents, and we do not use their data. 

• We submitted the final pre-registration (Registration 6, 7/25/22) before we collected the 

part of the Baseline survey data used for this paper that did include a Prescreening 

survey. 

In this section we briefly sketch how the many pieces of our pre-registered project 

materials fit with the paper as actually written. At a high level, what we did largely coincides 

with what we planned to do. However, our specific plans for the paper evolved as we piloted the 

 
1 Due to a data storage glitch (our date variable was truncated), we only have timing data for a small subset (N = 41) 

of respondents that took both versions of the pilot survey. Among this subsample, the retest version of the pilot was 

fielded between 13.6 and 16.3 days later, with an average gap of 14.2 days. 
2 We were considering collecting additional data on Prolific, and we wanted to avoid duplicating respondents across 

survey platforms, so our first version of the Prescreening survey asked respondents if they had completed the 

Baseline survey before (as described by the MTurk HIT title and a screenshot). 64% of respondents indicated that 

they had taken it, even though zero of their MTurk worker ID’s appeared in our previous data. From this we 

concluded that respondents, many of whom do numerous MTurk surveys, likely could not remember which surveys 

they had done. We dropped the question from the subsequent (final) version of the Prescreening survey. 
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survey, developed our scale-use correction methodology (in terms of concepts, specific 

calibration questions, and econometric strategies), and examined preliminary results. Readers of 

the pre-registrations will also note that, for the most part, we described our planned analyses only 

conceptually. We had partially developed our econometric approach. However, we came to 

realize that we needed an understanding of the distributions of the hyperparameters to figure out 

the details of the specifications, so we moved forward with data collection. Thus, we did not 

specify exact regression specifications, and we did not pre-register code. 

The intention of the pre-registration evolved with the project. We described our initial 

strategy for pre-registration in Registration 1: “The primary purpose of this registration is to 

define the analyses which are already planned before data collection, so we can include the 

N=500 sample, and increase our statistical power, when conducting them.” However, we 

modified the Baseline survey after this “N=500” pilot data collection, so we ultimately decided 

not to pool data from that sample (note, however, that the results are broadly similar between our 

pilot and subsequent data). The final registrations focused instead on our quality control 

procedure. As Registrations 3 through 6 show, it took us several attempts to develop an approach 

that made us confident that our data quality is sufficiently high. Our final quality control 

procedure is described in Section A.3.i. below. 

The survey design and econometric models in the paper do not have a direct counterpart 

in the registration materials. Earlier versions of the econometric model were registered in 

Registrations 1 and 2 (in 2020). The core of the theoretical framework and econometric model 

have changed little, but our estimation procedures have been substantially improved in the 

intervening years. We did not try to keep the registered econometric model updated as that work 

unfolded. We registered the pilot version of Baseline survey variables in Registration 1. In 

Registration 2 we noted adjustments to 12 of the 18 Baseline CQs to reduce top- or bottom-

coding, based on pilot data. (This is the primary reason we did not end up wanting to pool with 

pilot data.) Knowing that we would provide screenshots and details of our survey design in the 

eventual paper, we did not update the survey-question registration further. 

The final category of pre-registered project plans is descriptive analyses. The analysis 

plans fall into three categories. First, two descriptive analyses were pre-registered in substantially 

the same format as they appear in this paper: 
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1. “Suggestive evidence of general scale use” from Registration 1 (4/8/2020) evolved 

into Figure 4 of the current paper (“Relationships Between CQ- and SWB-Rating 

Means and Standard Deviations”). 

2. “Translation functions between demographic groups” from Registration 1 (4/8/20) 

evolved into Figure 5 (“Translation Functions Across Demographic Groups”). 

Two analyses in the present paper were pre-registered, but in a very different format: 

3. The idea behind “Demographic correlates of general scale use” from Registration 3 

(5/18/22, which was an update from Registration 1) is similar to Table 3 of the 

current paper (“Regression of Mean and Standard Deviation of Baseline CQs on 

Demographics”). However, we modified the proposed regression in several ways, 

including using more standard demographic questions and a simpler approach. 

4. A version of the “Curvature of the translation function” analysis sketched in 

Registration 1 is now in Web Appendix B, with a more sophisticated statistical 

approach. 

Finally, three other types of analyses are described in the pre-registrations but not 

included in the present paper. In the course of analyzing our data, we have done some analyses 

similar to what we proposed, but the project has evolved such that these topics are outside the 

scope of the present paper: 

5. Registration 1 contains materials for “multidimensionality” regressions where we 

planned to regress a huge set of socio-behavioral variables on different SWB ratings. 

6. Registration 1 proposes “Translation functions to test specific calibration questions.” 

7. Registration 3 proposes to explore the “U-shape in age” using both calibration 

questions and SWB questions.  

 

A.2. Design of Baseline Survey 

As noted in the main text of the paper, the “Baseline” survey consists of four types of 

questions:  

(1) SWB questions. (In the pre-registrations, we referred to the objects being rated as 

“aspects of well-being”; in this paper, we refer to the questions themselves as self-

reported well-being (SWB) questions.)  
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(2) Tradeoff questions, which ask respondents to choose between two options where the 

levels of well-being in different dimensions are higher or lower than the previously self-

reported levels. The tradeoff questions are not analyzed in this paper.  

(3) Calibration questions (CQs).  

(4) Demographic and behavioral questions. These fall into five general subcategories, aimed 

at learning about respondents’ demographics, behaviors, antecedents of scale-use 

tendencies,3 interpretation of specific SWB questions, and survey effort/experience. Only 

the demographic variables are analyzed in this paper. 

 

A.2.i. Baseline Survey Screenshots 

Examples are shown in Appendix K. 

 

A.2.ii. SWB Questions in Baseline Survey 

The 33 SWB questions are arranged in a “triple” design. A triple consists of three SWB 

questions, followed by six pairwise tradeoffs corresponding to those SWB questions. In the 

Baseline survey, there are 11 unique triples and 12 triples in total; the 11th triple is a repeat of 

the 2nd triple as a check for data quality. The order of the SWB questions (i.e., their assignment 

to triples) is randomized by respondent. 

Table A.1 lists the 33 SWB questions in the Baseline survey, in alphabetical order. The 

16 SWB questions with stars are also repeated in every block of the Bottomless follow-up survey 

(described in Section A.4); we are studying these dimensions in more depth in other work. 

 

Table A.1. SWB Questions in Baseline Survey 

Thinking about the past year, how would you rate… 

How happy you feel * 

How much you can trust most people in your nation 

How much you enjoy your life * 

How satisfied you are with your life * 

The ability of ordinary citizens to influence your national government 

 
3 To learn about possible antecedents of general scale use, we asked respondents about their state of birth, state 

where they grew up, native language, and other languages spoken at home. We also asked: “Think about the 

standards you use to grade yourself, and standards you use to grade other people. How would you compare them? 

I grade myself _______  I grade others” (the options are “much tougher than”, “somewhat tougher than”, “the same 

as”, “somewhat easier than”, and “much easier than”). We do not analyze these data in the present paper. 
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The absence of anger in your life 

The absence of sadness in your life * 

The absence of stress in your life  

The absence of worry in your life 

The air in your area not being polluted 

The extent to which you feel the things you do in your life are worthwhile * 

The happiness of your family * 

The overall well-being of you and your family * 

You and your family having enough to eat 

You being a good person 

You being a winner in life 

You being able to support your family financially * 

You feeling that you have enough time for the things that are most important to you * 

You having many options and possibilities in your life and the freedom to choose among them 

You having people you can turn to in time of need 

You not being lonely * 

You not feeling anxious * 

You not having to worry about being unemployed 

Your cultures and traditions being honored 

Your home being comfortable 

Your knowledge and skills 

Your living environment not being spoiled by crime and violence 

Your mental health * 

Your physical health * 

Your physical safety and security 

Your rating of your life on a ladder where the lowest rung is “worst possible life for you” and the 

highest rung is “best possible life for you” * 
Your sense of control over your life * 

Your sense of purpose * 

 

We developed the set of 33 SWB questions with several considerations in mind. The 

overall number of SWB questions was determined primarily by survey length constraints. For 

choosing specific SWB questions/dimensions, our primary goal was to try to cover dimensions 

of personal well-being as comprehensively as possible, informed by well-being measurement 

initiatives from the UK, New Zealand, Gallup, the OECD, and our own previous findings. To 

increase comprehensiveness, we also included four dimensions to capture the things for which 

people would trade off SWB measures, as found by Benjamin et al. (2012): sense of purpose, 

control over one’s life, family happiness, and social status. Our other major consideration was 

choosing dimensions that had high estimated relative marginal utilities in Benjamin et al. (2014) 
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and/or our pilot data. We made sure to include two questions that correspond to the same 

dimension as a calibration question and potentially closely relate to objective measures: “Your 

living environment not being spoiled by crime and violence” and “The air in your area not being 

polluted.” Finally, we included two questions for exploratory analysis: “You and your family 

having enough to eat” and “You feeling that you have enough time for the things that are most 

important to you.” 

 

A.2.iii. Calibration Questions in Baseline Survey 

 Table A.2 shows the 18 calibration questions in the Baseline survey. 

 

Table A.2. Calibration Questions in Baseline Survey 

How curved is this line? 

calibration_curve_1 calibration_curve_2 calibration_curve_3 

 

 
  

How dark is this circle? 

calibration_blue_1 calibration_blue_2 calibration_blue_3 

 

 
 

  

How big (by land area) is this region? 

calibration_region_1 calibration_region_2 calibration_region_3 
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If this situation described your life during the past year, how would  
you rate your level of  

Your living environment not being spoiled by crime and violence? 

calibration_crime_1 

You have been mugged on more than one occasion, so you don't carry around 

much more money or valuables. The police have increased their presence in your 

neighborhood, which makes you feel a little safer. 

calibration_crime_2 

You live in an apartment complex where tenants sometimes get robbed while 

they are away. The complex owners recently hired a security guard. You 

sometimes hear people in the neighborhood fighting, but you haven't had any 

trouble yet. 

calibration_crime_3 

You live in a quiet neighborhood where there is almost no crime. Recently, you 
 have noticed an uptick in the number of newspaper reports on home robberies, 

but none have been nearby. 

If this situation described your life during the past year, how would you 
rate your level of  

Your access to information? 

calibration_info_1 

An affordable internet package is not available in your area, so you do not have 

internet at home. You get television broadcasts, but not cable television. You 

have access to the internet during your breaks at work, and you read the local 

newspaper there. 

calibration_info_2 

You have a basic internet and cable television package at home. The speed of 

your internet connection is weak. You sometimes have difficulty streaming 

videos or loading webpages when multiple people in your family are using the 

internet. 

calibration_info_3 

You have internet and cable television (including premium channels) at home. 

You also get local access channels where several agencies feature local news. 

You wish you lived closer to the local library, which is several miles away. 
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If this situation described your life during the past year, how would you 
rate your level of  

Your ability to remember things? 

calibration_remember_1 

You friends joke about how forgetful you are. You do often get lost, even in 

places you should know well. It's difficult for you to remember names, and you 

often lose track of things. But you usually remember to set reminders for 

important appointments. 

calibration_remember_2 

You have a pretty good memory for details of the past. However, you have to 

work hard to remember new things. You sometimes forget people's names or lose 

track of your phone, but you can usually find it right away. 

calibration_remember_3 

You have a good memory for the details of past events including names of 

people, places, streets and dates. You don't have trouble remembering things in 

everyday life. However, you have to write down your to-do lists and passwords to 

remember them. 

 

A.2.iv. Vignette Design 

Our general approach for developing the details of a vignette was to begin with a set of 

sub-dimensions relevant to that dimension of well-being. We considered what the highest and 

lowest possible ends of the spectrum for that sub-dimension would look like. For example, for 

the dimension Your living environment not being spoiled by crime and violence, one of the 

relevant details or sub-dimensions is how closely you have been affected. In the worst-case 

extreme, you may have been affected by crime yourself; in the best-case extreme, you may not 

know of anyone personally who has been affected. For each SWB question, we identified two to 

three sub-dimensions. We wrote the three vignettes in the trio so they have monotonic changes in 

the sub-dimensions. This leads to a relatively clear ordering of “low,” “medium,” and “high” 

level vignettes. Note that our theoretical and statistical approach does not require monotonicity 

of the details in vignettes and does not require there to be a clear ranking of the vignettes in a 

trio. However, we hypothesize that such monotonicity—i.e., where every detail in one vignette is 

strictly higher or strictly lower than another vignette in the trio, for the dimension being rated—

reduces respondents’ difficulty of forming a perception of the level. 

The final feature of our vignette design attempted to reduce top- and bottom-coding 

(responses at 0 or 100). The high vignette in the trio always has a negative piece of information 
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about one sub-dimension (a detail indicating non-maximality), and the low vignette in the trio 

always has a positive piece of information about one sub-dimension (a detail indicating non-

minimality).  By including these details, we are trying to guarantee that the person in the vignette 

cannot truly be an edge case. 

Table A.3 reports the number and percentage of top- and bottom-coded responses for 

each calibration question in the Baseline survey. These suggest that we were reasonably 

successful at making top- and bottom-coding rare in CQs. 

 

Table A.3. Top- and Bottom-Coding of Responses to Calibration Questions 

Calibration Question 

Number  

(Percentage) of Bottom-

Coded Responses 

Number  

(Percentage) of Top-Coded 

Responses 

calibration_curve_1 4 (0.1%) 5 (0.1%) 

calibration_curve_2 0 (0%) 7 (0.2%) 

calibration_curve_3 3 (0.1%) 34 (1.0%) 

calibration_blue_1 88 (2.5%) 3 (0.1%) 

calibration_blue_2 8 (0.2%) 5 (0.1%) 

calibration_blue_3 5 (0.1%) 26 (0.7%) 

calibration_region_1 3 (0.1%) 1 (0.0%) 

calibration_region_2 2 (0.1%) 2 (0.1%) 

calibration_region_3 1 (0.0%) 13 (0.4%) 

calibration_crime_1 125 (3.5%) 50 (1.4%) 

calibration_crime_2 46 (1.3%) 40 (1.1%) 

calibration_crime_3 7 (0.2%) 82 (2.3%) 

calibration_info_1 59 (1.7%) 54 (1.5%) 

calibration_info_2 17 (0.5%) 57 (1.6%) 

calibration_info_3 11 (0.3%) 137 (3.9%) 

calibration_remember_1 20 (0.6%) 22 (0.6%) 

calibration_remember_2 6 (0.2%) 23 (0.6%) 

calibration_remember_3 4 (0.1%) 50 (1.4%) 

Notes: Bottom-coded responses refer to responses of 0, while top-coded responses refer to responses of 

100. The total number of responses for each calibration question was 3,558. 

 

A.3. Baseline Survey Sample 

 As described in Section I.C. of the paper, we fielded the Baseline survey on Amazon’s 

Mechanical Turk (MTurk) platform between June 13 and December 7, 2022. This section 

describes the fielding in more detail. We proceeded in 19 batches, which we call Batch A 

through Batch S. Figure A.1 shows the number of respondents in our sample for analysis (N = 
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3,358) from each batch, by start date of batch. Changes in our quality control methodology 

underlie the respondent volume pattern seen in Figure A.1; we ramped up fielding quickly, then 

adjusted our recruitment method and fielded at a slower pace. These issues are discussed in the 

next section. 

 

Figure A.1. Respondents in Baseline Sample for Analysis, by Start Date of Batch 

 

 

A.3.i. Quality Control Procedure 

This subsection describes the “quality control” (QC) criteria for excluding respondents 

from survey invitations (for Baseline or follow-up surveys) and excluding respondents from our 

primary analysis sample. (We also excluded individuals from invitations if they opted out of 

being contacted for follow-up surveys.) The goal of the criteria, overall, is to exclude 

respondents whom we suspect of being outside the U.S., being a bot (non-human respondent), 

and/or putting forth extremely low effort. This procedure is especially important given the 

concerns that many researchers have raised about the quality of MTurk samples (e.g., Kennedy 

et al., 2020; Peer et al., 2022). 

Baseline QC (Exclusion criterion for analysis sample and invitation to follow-up surveys) 
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Our Baseline QC criterion was established in Registration 4 (6/10/2022), before the first 

fielding of the “Baseline” sample used for analysis in the paper. It was the only QC criterion 

used for Batches A through D. The exclusion criterion is based on three factors: IP address, 

textbox responses, and survey completion time. We weight the factors using points, as described 

below. If a respondent has three or more total points, they are excluded from invitations to 

follow-up surveys (including Bottomless) and from the primary analysis sample. 

I. 3 points: Baseline survey was completed in less than 10 minutes. This based on (a) 

the fact that the fastest we can physically complete the survey is approximately 10 

minutes and (b) 10 minutes is approximately the bottom percentile (fastest survey 

takers) of Baseline respondents in the pilot data who would not have otherwise been 

excluded based on the other criteria. 

II. 2 points: IP Address originated from a virtual private server or from a non-US server. 

This is checked using an IP-checking service, DB-IP. We use an R package, 

rgeolocate, to access this service. 

III. 1 point: IP Address appeared more than once in the dataset. 

IV. 2 or 3 points: Poor responses to two textbox questions. The questions were: 

i. When you rated: “how satisfied you are with your life”, what was your thought 

process? 

ii. Think of a ladder where the lowest rung is ‘worst possible life for you’ and the 

highest rung is ‘best possible life for you’. Describe the life you imagine on the 

middle rung of the ladder. 

For both questions, the prompt in the textbox is: “Insert one or more sentences. 

Please use complete sentences.” 

Free-response textbox answers were scored by a team of three or four undergraduate 

research assistants, hereafter raters, with worse answers getting more points. (We started with 

four raters, but one found they did not have enough time for the project and quit.) For the QC 

criterion, we use the largest point value at least half of the raters give a participant. For example, 

if there were three raters and the rating values were (0, 0, 3), the points used would be a 0. If 

there were four raters and the rating values were (0, 0, 2, 3), the points used for exclusion would 

be a 2. This rule is robust to the number of raters changing. 
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To develop the textbox rating procedure, we began by rating 597 text boxes ourselves 

from the pilot sample. We gave the raters written instructions for rating textbox responses, 

including examples of graded responses. They rated the pilot sample text boxes based on these 

instructions. Then, we provided feedback and modified the instructions based on the raters’ 

points assignments, to bring their ratings closer to our ratings. Finally, the raters completed the 

textbox scoring for the non-pilot survey sample. To make sure the raters evaluated only the 

textbox responses, not other quality metrics or scale use tendencies, the raters did not work on 

any analysis tasks nor have access to any other data when they rated the textboxes. 

Quality Control Results and Addition of Prescreening Survey 

As we scaled up our recruiting in Batches A through D, we found that the percentage of 

respondents who passed QC declined. (By “passed QC” we mean those who were not excluded 

from follow-up studies and the analysis sample, based on the Baseline QC exclusion criterion 

described above.) This was especially troubling because the percentage passing QC in Batch A 

was already lower than it had been in the pilot. To avoid paying so many subjects for surveys 

with unusable data, we introduced a “Prescreening” survey, described further below. After 

testing the Prescreening survey and QC procedure with a few small batches (E-H), we introduced 

our final tool for quality control: using Qualtrics’ “prevent multiple submissions” feature on the 

Prescreening survey. With this feature enabled on a Qualtrics survey, Qualtrics places a cookie 

on the respondent’s browser when they submit the survey, and Qualtrics does not permit the 

respondent to take that survey again. Figure A.2 shows the total number of Baseline respondents 

and the percentage of those respondents who passed the Baseline QC, by fielding Batch. It also 

notes the points at which the Prescreening survey and cookie were introduced. 

In Figure A.2, the effect of the Prescreening survey on our percentage of respondents 

passing Baseline QC is a clear increase, from Batch D to E. The Baseline QC pass rate also 

increased when the cookie was introduced, from Batch H to I. The results of the QC procedure 

on our survey data are discussed further in section A.3.iii. 
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Figure A.2. Quality Control Results by Batch 

 

 

A.3.ii. Prescreening Survey Details 

The Prescreening Survey and related QC procedure are described in Registration 6 

(7/25/2022). The Prescreening Survey has 11 questions in total. We administered the survey 

using Qualtrics. The outline of the survey is as follows: (a) Consent form; (b) Abbreviated 

version of the Baseline instructions; (c) One “triple” (three SWB questions followed by six 

tradeoff questions) featuring three dimensions of well-being chosen randomly from the 20 

Baseline SWB dimensions that are not “public” or “double negative” dimensions (to make the 

survey instructions as simple as possible); (d) Two free-response (textbox) questions about what 

the respondent was thinking about while answering survey questions. 

Prescreening QC (Exclusion criteria for invitation to Baseline) 

The Prescreening QC criterion is based on IP address and textbox responses in the 

Prescreening survey. If a respondent has three or more total points, they are not invited to the 

Baseline survey. (Note that our payment of subjects was not tied to these criteria. Respondents 

were compensated $0.75 for completing the Prescreening survey, regardless of whether or not 

they passed our Prescreening QC.) 
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I. 2 points: IP Address originated from a virtual private server or from a non-US server. 

This is checked using an IP-checking service, DB-IP. We use an R package, 

rgeolocate, to access this service. 

II. 1 point: IP Address appeared more than once in the dataset. 

III. 2 or 3 points: Poor responses to the two free-response questions in the Prescreening 

survey. These questions are: 

i. In the rating questions, 0 was the “Lowest level possible” and 100 was the 

“Highest level possible.” How would you describe how you interpreted the 

word ‘possible’? 

ii. When you made the decisions, what were you thinking about? As a reminder, 

here is an example decision. [Screen includes a cropped screenshot of a 

tradeoff question.] 

For both questions, the prompt in the textbox is: “Insert one or more sentences 

here. Please use complete sentences.” 

The Prescreening textboxes were scored by the same team of three or four undergraduate 

research assistants who scored the Baseline QC textboxes. 

 

A.3.iii. Results of Quality Control Procedure 

Table A.4 reports respondent-level quality control variables by fielding group and QC 

results. Overall, the results reassure us that our quality control procedure led to a sample of 

respondents who are real humans and putting forth at least a minimum level of effort. Each 

variable (row) in the table is reported so that a higher number corresponds to a higher level of 

response quality.  

The first three columns are three respondent groups from before the Prescreening survey 

was implemented (Batches A-D): all who completed Baseline, those who failed Baseline QC, 

and those who passed Baseline QC. Looking down the rows for these columns, we see that the 

respondents who passed QC (column 3) have consistently higher quality than those who failed 

QC (column 2). This relationship must hold by definition for the variables that are directly 

related to the QC criterion. However, the other response-quality variables show a similar pattern.  

Note that the state comparison quality check—whether the respondent’s state derived 

from their IP address matches the state we derived from their ZIP code—has a relatively low 
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percentage of respondents passing the check in all columns. However, we did not expect these 

percentages to be as high as those for other quality checks. There would be some mismatches 

even if respondents behaved perfectly, for three reasons: IP address is an approximate 

geographic variable; ZIP codes do not map uniquely to states; and respondents could be traveling 

away from home while taking the survey. Still, we see the same patterns of the quality control 

procedure improving that variable as it improves the others. 

The final row is based on our tradeoff data. Here, we report the percentage of respondents 

who never fail an “opposite-direction trap,” i.e., they never choose a decrease in one dimension 

of SWB over an increase in another dimension of SWB, conditional on the respondent facing at 

least one opposite direction trap. The Baseline survey is designed so that tradeoff questions only 

show opposite changes in SWB dimensions with 2% probability. Before the Prescreening survey 

was implemented, the percentage of Baseline respondents who passed all the opposite-direction 

traps they faced was roughly twice as high in the passed-QC sample (23.5%, Column 3) than in 

the failed-QC sample (11.9%, Column 2). After the Prescreening survey was introduced, that 

percentage rose to 38.7%, for all Baseline respondents (Column 6). Because opposite-direction 

traps are rare, note that the sample sizes corresponding to the final row for Columns 7 and 8 are 

very small (N=1 and N=4, respectively). Therefore, the percentage of respondents who never 

failed an opposite-direction trap is basically unchanged between Column 6 (all who took 

Baseline after Prescreen) and Column 9 (the subset of those who took Prescreen after the cookie 

was introduced and passed Baseline QC). 

We now turn back to general comparisons across columns. Comparing Column 1 to 

Column 6, we see the intended effect of introducing the Prescreening survey: the quality level for 

respondents completing Baseline is better on every metric. The improvement in the Baseline 

textbox grade is especially striking, with only 25.5% receiving the highest grade before the 

Prescreening QC criterion was introduced and 90.5% receiving the highest grade after it was 

introduced.  

Column 7 shows the response-quality variables for the group of respondents who passed 

Prescreening QC but went on to fail Baseline QC. The quality measures in Column 7 are worse 

than those for all the other groups who passed the Prescreening survey (Columns 6, 8, and 9), 

with the exception of two variables with no difference (Unique IP address and Prescreening 

completion time greater than or equal to 3 minutes). This suggests that the Prescreening QC 
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criterion had some “type 2 error” in the sense of inaccurately allowing some low-quality 

respondents to proceed to Baseline. This also shows that there was value added by the second 

(Baseline) round of the QC procedure. 

 

Table A.4. QC Variables by Respondent Group 

 

  

We can also evaluate the success of our quality control procedure by comparing three of 

our quality metrics to similar metrics from Douglas et al. (2023), who compare respondent 

quality between five online survey platforms: MTurk, Prolific, CloudResearch, SONA, and 

Qualtrics. They construct a variable that indicates a high-quality respondent based on 11 
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measures: five attention checks, unique worker ID, unique IP address, unique geolocation, 

meaningful or blank open response, sufficient time taken, and self-reported high data quality. 

Here we will just discuss their MTurk and Prolific results.  

Douglas et al. find that 97.2% of respondents have unique IP addresses in their MTurk 

sample and 98.8% have unique IP addresses on Prolific. As seen in Table 4, our percentage of 

Baseline respondents with a unique IP address increases from 86.7% without any QC procedure 

(Column 1) to 96.5% with the Baseline QC procedure (Column 3) and 99.6% with the 

Prescreening survey and cookie (Column 9). For Douglas et al.’s open response question, a 

graduate student RA and an undergrad RA both graded the answer to “Do you have any 

additional comments for us?” A worker’s textbox is classified as meaningful if (a) both graders 

rate the answer as meaningful, or (b) the worker leaves the textbox blank. Otherwise the textbox 

is classified as meaningless. On MTurk, 82.2% of their respondents have a blank or meaningful 

response. On Prolific, it is 99.2%. We believe that a high-quality response is more difficult for 

our textbox questions, since we ask about question interpretation and we do not accept blank 

responses (a blank response is assigned the worst score of 3 points). Nevertheless, looking at the 

percentage of respondents with the best possible textbox grade on Baseline, we see an increase 

from 25.5% before any QC procedure (Column 1) to 83.9% with the Baseline QC (Column 3) 

and 96.5% after the Prescreening survey and cookie (Column 9). 

Finally, Douglas et al. asked participants the same survey question twice, 21 questions 

apart in the survey, to assess the test-retest correlation of participant responses. They find a 

correlation of 0.54 for MTurk and 0.87 for Prolific. Recall that in our Baseline survey, the 11th 

triple is a repeat of the 2nd triple as a check for data quality; this means that each respondent 

rates three SWB questions twice within the same survey. We find that the test-retest correlation 

is 0.73 before any QC procedure (Column 1), 0.83 after the Baseline QC (Column 3), and 0.84 

after the Prescreening QC and cookie (Column 9). Given these three comparisons (though they 

are admittedly rough), we conclude that our survey sample’s quality is closer to Douglas et al.’s 

Prolific sample quality than their MTurk quality. 

 

A.4. Bottomless Survey Description 
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A.4.i. Design 

We invited qualified respondents—those who completed Baseline, passed quality control, 

and were willing to be contacted for follow-up surveys—to several follow-up surveys. This 

paper utilizes a subset of data from one of the follow-up surveys that we refer to as the 

“Bottomless” survey because it is very long. The Bottomless survey is arranged in 30 sequential 

“blocks,” each of which corresponds to a single HIT on MTurk. Figure A.3 shows the 

progression of respondents through the Prescreening, Baseline, and Bottomless survey, with an 

overview of the survey content.  

 

Figure A.3 Overview of surveys and recruitment flow 

 

 

Block 1 of the Bottomless survey is identical to the Baseline survey, except it has 

abbreviated and slightly different instructions (described further below) and no 

demographic/behavioral or exit questions at the end. Blocks 2-29 begin either with one or more 

SWB questions on “alternative scales” (with response options other than the 0-100 scale from the 

Baseline survey) or (at the start of Blocks 8 and 9) questions about remembered or expected 

SWB at ages 50 and 75; the SWB questions come from the European Social Survey (ESS), 

General Social Survey (GSS), Health and Retirement Study (HRS), the global life satisfaction 

question in Kapteyn, Smith, and van Soest (2009) (KSV), World Values Survey (WVS), Gallup 

World Poll, and UK Office of National Statistics (ONS). The details of these questions, 

including their block location in the Bottomless survey, can be found in Appendix K.4. In 

Figures 7 and 8 of the main text, we compare the mean or standard deviation of these SWB 

ratings on alternative scales to the mean or standard deviation, respectively, of CQ ratings on the 

0-100 scale. We describe the 388 CQs used in those analyses (and others) in A.4.iii. below. 
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In Blocks 2-29, after the survey screen with SWB questions on alternative scales, each 

block contains CQs, SWB questions, and tradeoff questions that have the same structure as the 

Baseline survey but with different question details. The 33 SWB questions partially vary by 

block; the 16 SWB questions that are starred in Table A.1 are repeated in every block, while the 

other 17 questions are varied. The new SWB questions in each block are listed in Appendix K2. 

The 18 CQs (6 trios) in each block are fixed across respondents, but we randomize the order of 

the trios within block (first randomizing whether vignettes or visuals come first, and then 

randomizing trios within CQ category) and also randomize the order of CQs within trio. We 

describe the CQs in more detail below. 

Block 30 begins with the five Satisfaction With Life Scale (SWLS) questions from 

Diener et al. (1985). The rest of the block includes 48 SWB questions and 36 CQs (and no 

tradeoff questions) to explore to which extent “reverse-coding” of SWB questions may help 

researchers deal with general-scale-use heterogeneity (for example, rating “How anxious you 

feel” instead of “You not feeling anxious”). Data from Block 30 are not analyzed in this paper. 

In particular, we did not include the CQs in our analyses because we hypothesize that scale use 

may be different for reverse-coded questions or immediately after completing a reverse-coded 

question. 

Screenshots of all 558 CQs in the Bottomless survey (18 per block in Blocks 1 through 

29 plus 36 in Block 30) can be found in Appendix K2. Here, we briefly describe two features of 

vignettes in the Bottomless survey that differ from those in Baseline: survey instructions and 

randomization of the vignette subject’s gender and age.  

First, as the note in Figure 3 of the main text explains, the instructions at the top of each 

vignette CQ screen in the Baseline survey ask respondents to “Imagine everything in your life is 

the same as it is now, except for the details described in each situation below.” We included this 

instruction because we anticipated that respondents would find it difficult to accurately imagine a 

situation very far from their own life. However, this instruction could induce violations of 

Assumption 2 of our statistical model: if respondents are “filling in the blanks” about the 

vignette person’s life with their own life details, then the underlying state 𝜔𝑐 that is being rated 

will not be the same across individuals. In the Bottomless survey, we instruct respondents with a 

different preamble at the top of the screen: “In this set of questions, you will rate situations in 

other people’s lives. Try to use the scale as you would if you were rating that situation for 
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yourself. (But remember, ‘you’ or ‘your’ refers to the other person.)” We call this instruction 

framing “second-person-other.” 

In Figure A.4, we test for an effect of the instruction wording on general scale use, using 

the Figure 4 analysis from the main text. The first row replicates Figure 4, limited to the sample 

of respondents who did the first block of the Bottomless survey; the second row uses data from 

Block 1 of Bottomless (with the second-person-other instructions); the third row uses the 

difference of Baseline and Bottomless Block 1 ratings, as the x-axis variable. While the point 

estimates suggest slightly higher correlations for the CQ ratings in Baseline for both mean and 

SD, neither correlation is statistically distinguishable between the CQ ratings in Baseline and 

Bottomless Block 1. Thus, the Baseline instructions appear to induce little or no additional bias 

relative to the Bottomless Block 1 instructions. Since we anticipate that instructing participants 

to “fill in the blanks” with their own life details generates a bias relative to Assumption 2, we 

conclude that this bias is similarly present even when participants are not explicitly instructed to 

do so. 

 

Figure A.4: The effect of vignette instruction wording on general scale use 
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The second variation from Baseline is that, for 38 of the vignette dimensions studied in 

this paper, we have at least one trio where the gender of the person described by the vignette is 

randomized at the trio level: male, female, or second-person-other. A summary of the 

instructions, vignette text, and question prompt for each type of vignette is shown in Table A.5. 

Our strategy for choosing male and female names was the following: (i) use the most common 

names, as reported by the U.S. Social Security Administration, from the birth year corresponding 

to the average age of MTurk respondents in our pilot data (age 37, birth year 1983: 

https://www.ssa.gov/oact/babynames/state/top5_1983.htm); (ii) select a subset of names which 

seemed as much as possible, a priori, to have racial/ethnic neutrality and unambiguous gender 

connotation; (iii) omit names which were already used in vignettes from other sources (six names 
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from our pilot CQs (Juan, Peter, Sasha, Rachel, James, and Taylor), and 24 names from Kapteyn 

et al. (2009) vignettes). We randomly assigned the names to CQs. Table A.6 shows an example 

of how the text for a given vignette would be modified for male and female versions. 

 

Table A.5: Instructions and prompts for vignette CQs 

Survey location 

and vignette type 

Preamble (top of screen) Vignette text Prompt 

Baseline survey, 

“self” vignettes 

In this set of questions, you will rate 

situations that are different from the 

situation in your life. Imagine 

everything in your life is the same 

as it is now, except for the details 

described in each situation below. 

[Vignette_self] If this situation described your life 

during the past year, how would 

you rate your level of 

[dimension]? 

Bottomless survey, 

“second-person-

other” vignettes 

In this set of questions, you will rate 

situations in other people's lives. 

Try to use the scale as you would if 

you were rating that situation for 

yourself. (But remember, “you” or 

“your” refers to the other person.) 

[Vignette_self] If this situation described your life 

during the past year, how would 

you rate your level of 

[dimension]? 

Bottomless survey, 

male vignettes 

[Name_male] is 

[AGE] years old. 

[Vignette_male] 

Thinking about the past year, how 

would you rate the level of 

[dimension] in [Name_male]’s 

life? 

Bottomless survey, 

female vignettes 

[Name_female] is 

[AGE] years old. 

[Vignette_female] 

Thinking about the past year, how 

would you rate the level of 

[dimension] in [Name_female]’s 

life? 

 

Table A.6: Example of vignette text and prompt for all vignette types in Bottomless survey 

Vignette type Vignette text and prompt for the dimension Your ability to remember things (Low level) 

Second-

person-other 

Your friends joke about how forgetful you are. You do often get lost, even in places you should 

know well. It’s difficult for you to remember names, and you often lose track of things. But you 

usually remember to set reminders for important appointments. 

 

If this situation described your life during the past year, how would you rate your level of Your 

ability to remember things? 

Male Shaun is [AGE] years old. His friends joke about how forgetful he is. He does often get lost, even in 

places he should know well. It’s difficult for him to remember names, and he often loses track of 

things. But he usually remembers to set reminders for important appointments. 

 

Thinking about the past year, how would you rate the level of Your ability to remember things in 

Shaun’s life? 
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Female Barbara is [AGE] years old. Her friends joke about how forgetful she is. She does often get lost, 

even in places she should know well. It’s difficult for her to remember names, and she often loses 

track of things. But she usually remembers to set reminders for important appointments. 

 

Thinking about the past year, how would you rate the level of Your ability to remember things in 

Barbara’s life? 

 

Finally, as Tables A.5 and A.6 show, for almost all vignettes with a gender 

randomization, we also randomize the vignette subject’s age. The age is randomized at the CQ 

level, drawn from integers 22 to 80, inclusive, with uniform probability. The only vignettes with 

gender randomized but no age randomization are the 12 vignettes we drew from Kapteyn et al. 

(2009); we tried to match their questions as closely as possible, and they did not randomize the 

vignette person’s age.4 There are no CQs with an age randomization but no gender 

randomization. In this paper, all of our results with Bottomless survey CQs are pooled across 

vignette types and ages. 

 

A.4.ii. Bottomless Survey Fielding 

Using Amazon’s MTurk platform, we collected data on the Bottomless survey between 

September 20, 2022, and January 3, 2023. The median length of time between completing 

Baseline and the first block of Bottomless survey was about 7 weeks (46 days), with a range 

from 6 days to 164 days. Respondents were compensated $1.50 per Bottomless block completed, 

with a bonus of $15 if all 30 blocks were completed. The median completion time for Block 1 

was 18 minutes; Blocks 2-29, 13 minutes; and Block 30, 13 minutes. Of the 3,277 respondents 

who passed Baseline quality control and were invited to follow-up surveys, N = 2,603 (79.4 

percent) completed the first block of Bottomless. (Note that in Appendix F, which is described in 

section VII.C. of the main text, and Appendix J, we limit the Block 1 sample to the 2,472 

respondents who also completed all the main demographic variables in the Baseline survey. We 

do not exclude respondents based on completion of demographic variables in the other analyses 

of Bottomless data, which do not require demographic variables (Figures 7 and 8 and 

Appendices B, H, and I)). Of the respondents who completed Block 1, N = 701 (26.9 percent) 

 
4 We also include five vignettes about political efficacy, based on King et al. (2004), which include a name but no 

age, and the name is not randomized. In order to use the same trio design for all CQs, we wrote a sixth vignette 

about the political efficacy dimension, with the same format as the others. As seen in Table A.7 below, the wording 

of our dimension for political efficacy is, “You having a say in getting the government to address issues that interest 

you.”  
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completed the survey through Block 29; this is the sample analyzed in Figures 7 and 8 and 

Appendices B, H and I. For completeness, we note that N = 656 (25.2 percent) completed the 

survey through all 30 blocks, taking an average of 7.2 hours to complete them. Figure A.5 

illustrates the survey samples used for the paper and appendices. 

 

Figure A.5: Survey Samples 

 

 

A.4.iii. Calibration Questions from Bottomless Survey 

The set of 388 CQs used in Figures 7 and 8 of the main text, and in analyses in Appendix 

B and Appendix H, consists of all the CQs from Blocks 1-29, with the following exceptions. In 

Blocks 13-18, we asked the Baseline CQs on alternative scales; we exclude these because this 

paper only analyzes CQs on the 0-100 scale. We exclude the CQs from Block 19, which are 

visual CQs intended for exploratory analysis and as “placebos” (with intentionally extreme 

stimuli). We exclude a trio of visual CQs about the cuteness of a dog, in Block 12, because we 

concluded a priori that it was not likely to satisfy the assumption that the true states are the same; 

there may be systematic differences in perceived cuteness by “dog people” vs. “cat people” that 
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are correlated with many other variables. Finally, we excluded five CQs that had technical 

problems during fielding.5 

The 388 CQs that we analyze from the Bottomless survey cover 60 dimensions in total; 

see Table A.7 for the list and categorization. The visual category has ten dimensions; the 

category of non-local public goods has eight dimensions; there are three dimensions of local 

public goods; the remaining 39 dimensions in the vignette category relate directly to personal 

well-being. In section VII.B of the main text (Relative Importance of General-Scale-Use 

Heterogeneity) and its companion Appendix H, we restrict our analysis further to 42 dimensions 

of CQs, excluding visual dimensions and non-local public goods. In Table A.7, these 42 

dimensions are the ones in the vignette and local public good categories. The number of CQs for 

a given dimension ranges from 3 (just one trio) to 27 (nine trios for the vignette dimension, 

“How satisfied you are with your life”). See Appendix K.3 screenshots for detailed wording of 

vignettes and visual CQ images.  

 

Table A.7: 60 CQ Dimensions from Bottomless Survey 

Dimension 
Category of 

Dimension 

Number of 

CQs in 

Dimension 

Number of trios 

with gender/age 

randomization 

Number of 

unique 

trios* 

Your access to information Vignette 15 1 4 

Your ability to remember things Vignette 9 1 2 

Your ability to breathe in and out easily Vignette 5 1 2 

You and your family having enough to eat Vignette 2 1 1 

The quality and quantity of green spaces in 

your area 

Local public good 6 0 2 

You having people you can turn to in time of 

need 

Vignette 

 

3 0 1 

Your ability to hear Vignette 6 2 2 

Your knowledge and skills Vignette 3 1 1 

Your physical health Vignette 9 2 2 

You having many options and possibilities in 

your life and the freedom to choose among 

them 

Vignette 3 1 1 

You being able to rise to the challenges you 

face 

Vignette 6 2 2 

 
5 For part of our sample, the survey text did not appear correctly for the “you not feeling anxious” trio in Block 24. 

And for part of the sample, the survey text did not appear correctly for two other individual CQs: the “low” option 

from the “having enough to eat” trio (Block 11) and the “low” option from the “ability to breathe” trio (Block 20). 

We exclude these five CQs from analysis. 
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Your ability to see Vignette 6 2 2 

Your sense of control over your life Vignette 9 2 2 

Your sense of purpose Vignette 9 2 2 

You being able to sleep well at night Vignette 6 2 2 

Your ability to walk several blocks Vignette 6 2 2 

Your living environment not being spoiled 

by crime and violence 

Local public good 6 0 2 

The air in your area not being polluted Local public good 3 0 1 

The absence of anger in your life Vignette 9 3 3 

You not feeling anxious Vignette 18 5 6 

You not being worried about money Vignette 6 2 2 

You not being trapped in physical pain Vignette 6 2 2 

The absence of sadness in your life Vignette 9 2 2 

The absence of stress in your life Vignette 9 2 3 

The absence of worry in your life Vignette 3 1 1 

You not being lonely Vignette 9 2 2 

You not having to worry about being 

unemployed 

Vignette 3 1 1 

How much you enjoy your life Vignette 9 2 2 

The happiness of your family Vignette 9 2 2 

You being able to support your family 

financially 

Vignette 9 2 2 

You being a good person Vignette 9 2 2 

How happy you feel Vignette 9 2 2 

Your health Vignette 6 2 2 

Your home being comfortable Vignette 3 1 1 

Your rating of your life on a ladder where the 

lowest rung is worst possible life for you and 

the highest rung is best possible life for you 

Vignette 9 2 2 

Your mental health Vignette 15 4 4 

Your physical safety and security Vignette 3 1 1 

How satisfied you are with your life Vignette 27 Gender: 8, Age: 

4** 

8 

You being a winner in life Vignette 3 1 1 

You feeling that you have enough time for 

the things that are most important to you 

Vignette 9 2 2 

The overall wellbeing of you and your family Vignette 3 1 1 

The extent to which you feel the things you 

do in your life are worthwhile 

Vignette 9 2 2 

Curved Visual 6 0 2 

Dark Visual 6 0 2 

Big (region size) Visual 6 0 2 

Confident Visual 3 0 1 

Big (country size) Visual 6 0 2 

Large (diamond culet) Visual 3 0 1 

Complex Visual 3 0 1 
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Sharp Visual 3 0 1 

Symmetric Visual 3 0 1 

Absence of pain (visual) Visual 3 0 1 

The ability of ordinary citizens to influence 

your national government 

Non-local public good 3 0 1 

How much you can trust most people in your 

nation 

Non-local public good 3 0 1 

Your cultures and traditions being honored Non-local public good 3 0 1 

Freedom of the press in your nation Non-local public good 3 0 1 

The condition of the natural environment Non-local public good 3 0 1 

You having a say in getting the government 

to address issues that interest you 

Non-local public good 6 0 2 

The leaders of your state government not 

being corrupt 

Non-local public good 6 0 2 

How little violence there is in the world Non-local public good 3 0 1 

* For some trios, we asked the second-person-other vignette type in one block and asked the male/female vignette 

type (randomized) in another block. When this happens, we only count one “unique” trio. However, we still count 

this as 6 CQs for the Number of CQs in Dimension column (given that we are pooling across types in our analyses). 

** As noted in section A.4.i, there are 4 trios (12 CQs) for the dimension, “How satisfied you are with your life,” 

which have a randomization of gender but not age, since these vignettes come from Kapteyn et al. (2009). For all 

other dimensions, a CQ either has both age and gender randomization or neither. 
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B. Evidence on the Linearity of the Translation Function 

Our translation function (equation 4) assumes that the observed CQ rating 𝑟𝑖𝑐 is linear in 

the common-scale CQ rating 𝑤𝑐 . To gauge the plausibility of the linearity assumption, we extend 

the translation function with a quadratic term:6 

 

𝑟𝑖𝑐 − 𝛾 = 𝛼𝑖 + 𝛽𝑖(𝑤𝑐 − 𝛾) + 𝛿𝑖(𝑤𝑐 − 𝛾)2 + 𝛽𝑖𝜖𝑖𝑐 + 𝜂𝑖𝑐. 

 

As in the linear translation function, we assume 𝛼𝑖 ∼ 𝒩(0, 𝜎𝛼
2), 𝛽𝑖 ∼ 𝒩(1, 𝜎𝛽

2), 𝜖𝑖𝑐 ∼ 𝒩(0, 𝜎𝜖
2), 

and 𝜂𝑖𝑐 ∼ 𝒩(0, 𝜎𝜂𝑖
2 ), all mutually independent. To be consistent with 𝑤𝑐’s definition as the 

population mean of respondents’ rating of CQ 𝑐, we assume that 𝛿𝑖 has mean zero in the 

population. In Section B.2 (but not B.1), we additionally assume 𝛿𝑖 ∼ 𝒩(0, 𝜎𝛿
2), independent of 

everything else. The closeness of our estimate of 𝜎𝛿 to its theoretical lower bound, zero, serves 

as a test of the existence and importance of a quadratic term in the translation function and hence 

a gauge of the curvature of the translation function. 

 

B.1. OLS Evidence 

We can obtain an estimate of 𝜎𝛿 by the standard deviation of estimates of 𝛿𝑖’s; this 

estimator is biased upward by estimation error, but this bias can be adjusted for—and will be 

small if the number of CQs is large. The 𝛿𝑖’s can be estimated by a respondent-level OLS 

regression of 𝑟𝑖𝑐 on 𝑤𝑐  and 𝑤𝑐
2 with a constant term,7 where 𝑤𝑐  is estimated by the mean rating 

(∑ 𝑟𝑖𝑐𝑖 /𝐼). The coefficient on 𝑤𝑐
2 estimates 𝛿𝑖. 

In a subsample from our Bottomless survey where 701 respondents completed more than 

388 analysis CQs,8 the estimated 𝛿𝑖’s have a mean of −5.57 × 10−18 and a standard deviation of 

 
6 We do not also include squared error terms because they would have non-normal distributions, substantially 

complicating the MLE. 
7 There is no need to subtract 𝛾 from 𝑤𝑐 in the regression because the terms related to 𝛾 will be subsumed into the 

constant term and the 𝑤𝑐 term. 
8 See Appendix A.4 for the process of arriving at the 388 analysis CQs. 
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0.0077; after adjusting for estimation errors, the standard deviation becomes 0.0071. A 

nonparametric density plot (Figure B.1) of the estimated 𝛿𝑖’s suggests that the distributional 

assumption of normality does not hold exactly but may be a reasonable approximation. 

 

Figure B.1: Density plot of �̂�𝒊
  

 

Note: The depicted density plot is constructed using a Gaussian 

kernel estimator (with bandwidth selected by Silverman’s ‘rule 

of thumb’ procedure, as implemented by R’s bw.nrd0 function). 

 

B.2. MLE Evidence 

To formally and more efficiently estimate 𝜎𝛿, we utilize maximum likelihood estimation 

with a likelihood function constructed from the following sub-likelihood function, evaluated on 

the data of each respondent’s CQ responses (𝐫𝑖𝒞 ≡ {𝑟𝑖𝑐}𝑐=1
𝐶 ): 

 

𝑙𝑖(𝒓𝑖𝒞 ∣ 𝛼𝑖 , 𝛽𝑖 , 𝛿𝑖 , 𝛾, 𝒘𝒞 , 𝜎𝜖 , 𝜎𝜂𝑖
)

= 𝜙 ([𝒓𝑖𝒞 − (𝛼𝑖 + 𝛾)𝟏𝐶 − 𝛽𝑖(𝒘𝒞 − 𝛾𝟏𝐶) − 𝛿𝑖(𝒘𝒞 − 𝛾𝟏𝐶)2](𝛽𝑖
2𝜎𝜖

2 + 𝜎𝜂𝑖
2 )

−
1
2) (𝛽𝑖

2𝜎𝜖
2 + 𝜎𝜂𝑖

2 )
−

𝐶
2 ,

 

 

where 𝜙 is the multivariate standard-normal density function, 𝟏𝐶 is the 𝐶-dimensional vector full 

of ones, and 𝒘𝒞 ≡ [𝑤1, … , 𝑤𝐶]′. 
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Assuming independence across respondents, the log-likelihood function for CQ ratings of 

all respondents (𝒓⋅𝒞 ≡ {𝒓𝑖𝐶}𝑖=1
𝐼 ) is thus 

 

lnℒ (𝒓⋅𝒞 ∣ 𝜎𝛼 , 𝜎𝛽, 𝜎𝛿, 𝛾, 𝒘𝒞, 𝜎𝜖 , 𝜇ln𝜎𝜂
, 𝜎ln𝜎𝜂

)

= ∑ln

𝑖

⨌𝑙𝑖(𝒓𝑖𝒞 ∣ 𝛼𝑖 , 𝛽𝑖 , 𝛿𝑖 , 𝛾, 𝒘𝒞 , 𝜎𝜖 , 𝜎𝜂𝑖
)𝑓(𝛼𝑖)𝑓(𝛽𝑖)𝑓(𝛿𝑖)𝑓(𝜎𝜂𝑖

)𝑑𝛼𝑖𝑑𝛽𝑖𝑑𝛿𝑖𝑑𝜎𝜂𝑖
,
 

 

where 𝑓 denotes a probability density function. More explicitly, 

 

lnℒ(𝒓⋅𝒞 ∣ 𝜎𝛼 , 𝜎𝛽, 𝜎𝛿, 𝛾, 𝒘𝒞, 𝜎𝜖 , 𝜎𝜂𝑖
)

= ∑ln

𝑁

𝑖=1

[∫ ∫ ∫ ∫ (2𝜋)−
𝐶
2

∞

−∞

∞

−∞

∞

−∞

∞

0

(𝛽𝑖
2𝜎𝜖

2 + 𝜎𝜂𝑖
2 )

−
𝐶
2

⋅ exp (−
1

2
[𝒓𝑖𝒞 − (𝛼𝑖 + 𝛾)𝟏𝐶 − 𝛽𝑖(𝒘𝒞 − 𝛾𝟏𝐶) − 𝛿𝑖(𝒘𝒞 − 𝛾𝟏𝐶)2]′(𝛽𝑖

2𝜎𝜖
2 + 𝜎𝜂𝑖

2 )
−1

⋅ [𝒓𝑖𝒞 − (𝛼𝑖 + 𝛾)𝟏𝐶 − 𝛽𝑖(𝒘𝒞 − 𝛾𝟏𝐶) − 𝛿𝑖(𝒘𝒞 − 𝛾𝟏𝐶)2])
1

√2𝜋𝜎𝛼

exp (−
𝛼𝑖

2

2𝜎𝛼
2
)

⋅
1

√2𝜋𝜎𝛽

exp (−
(𝛽𝑖 − 1)2

2𝜎𝛽
2 )

1

√2𝜋𝜎𝛿

exp (−
𝛿𝑖

2

2𝜎𝛿
2)

1

√2𝜋𝜎𝜂𝑖
𝜎ln𝜎𝜂

exp (−
(ln𝜎𝜂𝑖

− 𝜇ln𝜎𝜂
)

2

2𝜎ln𝜎𝜂

2 )𝑑𝛼𝑖𝑑𝛽𝑖𝑑𝛿𝑖𝑑𝜎𝜂𝑖
] .

 

 

As in the estimation of our main specification, we use hierarchical modeling to deal with 

the computational burden of the multidimensional numerical integration. 

In the subsample mentioned above (𝐼 = 701), the MLE estimate of 𝜎𝛿 is 0.0068 with a 

standard error of 0.00057.9 Quantitatively, the point estimate implies that, when 𝑤𝑐  is 10 points 

higher, the quadratic term contributes less than 1.36 points to the raw rating for 95% of 

respondents. The MLE estimate of 𝜎𝛿 based on our Baseline data (which has far fewer CQs but 

many more respondents) is 0.000556 and not statistically distinguishable from zero (SE = 

0.00116). This estimate suggests that the quadratic coefficient in the translation function is even 

smaller. 

 

 
9 The MLE estimate could be biased away from zero (making it an upper-bound estimate) due to the positivity 

constraint, although this bias is likely small because the estimate is quite precise. 



 32 

B.3. Graphical Evidence 

To provide visual evidence for the assumption of linearity in the translation functions, we 

plot respondent-level 388 Bottomless CQ ratings (y-axis) against the sample means of these 

CQs. To keep the figure manageable, we randomly draw nine respondents from the 1st through 

9th deciles of the estimated 𝛿𝑖. 

We use both an OLS line and a nonlinear LOESS curve to fit the points in each plot. The 

proximity of the nonlinear LOESS curve to the OLS line as shown in Figure B.2 makes clear 

how well linearity approximates the translation function. In every plot shown, including those for 

respondents with the most concave translation functions (shown in the top-left plot, 

corresponding to the 1st decile) and the most convex translation functions (shown in the bottom-

right plot, corresponding to the 9th decile), there is considerable overlap between the LOESS 

curves and the OLS lines. Moreover, the correlations between individual ratings and the 

population means remain high even for relatively more nonlinear data (in fact, the correlations 

for the plots of the individuals from deciles 1 and 9 turn out to be higher than the correlations 

from deciles 2, 5, 6, 7, and 8). Furthermore, for all the individuals shown, the R2 of the linear fit 

is nearly equal to (and well within the 95% confidence interval of) the R2 value of the LOESS 

regression. 

 

Figure B.2: Respondent-Level Translation Functions 
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Notes: The sample is 701 respondents who completed all relevant CQs. Each point on a graph is one of 388 

Bottomless survey CQs (see Web Appendix A.4 for details on the CQs excluded for this analysis). Each CQ is rated 

on a 0-100 scale. x-axis: population mean rating of each CQ. y-axis: CQ rating for each of the nine respondents at 

the 10th, 20th, …, and 90th percentiles of the population indicated in y-axis title, where the population is ordered by a 

respondent’s squared-term coefficient in a regression of that respondent's CQ ratings on the population means of the 

CQ ratings and the squared population means. Dashed line: 45-degree line. Solid black line: OLS regression; dark 

gray region: 95% CI. Gray curve: LOESS regression of respondent's CQ ratings on population means; light gray 

region: 95% CI. Correlations are reported in each plot. 

 

 

C. Biases From Not Adjusting for Scale-Use Heterogeneity 

This appendix contains derivations for the (asymptotic) biases resulting from not 

adjusting for scale-use differences. We will focus on the biases for estimating the common-scale 

SWB’s first and second moments of interest. We will also discuss the biases arising from the 

additional assumptions of our MOM estimators, such as the independence between the stretcher 

and the common-scale SWB. 

 

C.1. Bias in Estimating 𝑬(𝒘𝒊𝒔) 

When ignoring scale use—or when correcting for scale use but ignoring the dependence 

between 𝛽𝑖 and 𝑤𝑖𝑠—the estimator is 𝐸(𝑟𝑖𝑠) (for a derivation, see Appendix E.1). Under our 

translation function (equation 4), 
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𝐸(𝑟𝑖𝑠) = 𝐸(𝛼𝑖 + (1 − 𝛽𝑖)𝛾 + 𝛽𝑖(𝑤𝑖𝑠 + 𝜖𝑖𝑠) + 𝜂𝑖𝑠)

= 𝐸(𝛽𝑖𝑤𝑖𝑠)

= 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠) + 𝐸(𝑤𝑖𝑠),

 

 

where the last equality holds because 𝐸(𝛽𝑖) = 1. The bias is thus 

 

𝐸(𝑟𝑖𝑠) − 𝐸(𝑤𝑖𝑠) = 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠). 

 

If 𝛽𝑖 and 𝑤𝑖s are uncorrelated, not correcting for scale-use differences does not bias the 

estimation for 𝐸(𝑤𝑖𝑠). When such a correlation exists, however, the estimator that ignores scale 

use and the MOM estimator for 𝐸(𝑤𝑖𝑠) are biased, but the semi-parametric estimator and the 

comprehensive MLE estimator can correct the bias. 

 

C.2. Bias in Estimating 𝑪𝒐𝒗(𝒙𝒊, 𝒘𝒊𝒔) 

 

C.2.1. When Ignoring Scale Use 

The estimator ignoring scale use is 𝐶𝑜𝑣(𝑥𝑖, 𝑟𝑖𝑠). Because 

 

𝐶𝑜𝑣(𝑥𝑖 , 𝑟𝑖𝑠) = 𝐶𝑜𝑣(𝑥𝑖 , 𝛼𝑖 + (1 − 𝛽𝑖)𝛾 + 𝛽𝑖(𝑤𝑖𝑠 + 𝜖𝑖𝑠) + 𝜂𝑖𝑠)

= 𝐶𝑜𝑣(𝑥𝑖 , 𝛼𝑖) − 𝛾𝐶𝑜𝑣(𝑥𝑖 , 𝛽𝑖) + 𝐶𝑜𝑣(𝑥𝑖 , 𝛽𝑖𝑤𝑖𝑠)

= 𝐶𝑜𝑣(𝑥𝑖 , 𝛼𝑖) − 𝛾𝐶𝑜𝑣(𝑥𝑖 , 𝛽𝑖)

+𝐸(𝛽𝑖)𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) + 𝐸(𝑤𝑖𝑠)𝐶𝑜𝑣(𝑥𝑖 , 𝛽𝑖)

+𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))]

= 𝐶𝑜𝑣(𝑥𝑖 , 𝛼𝑖) + [𝐸(𝑤𝑖𝑠) − 𝛾]𝐶𝑜𝑣(𝑥𝑖, 𝛽𝑖) + 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠)

+𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))],

 

 

the bias is 

 

𝐶𝑜𝑣(𝑥𝑖 , 𝑟𝑖𝑠) − 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) = 𝐶𝑜𝑣(𝑥𝑖 , 𝛼𝑖) + [𝐸(𝑤𝑖𝑠) − 𝛾]𝐶𝑜𝑣(𝑥𝑖 , 𝛽𝑖)

+𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))].
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The co-skewness term relates to the asymmetry of the joint distribution of (𝛽𝑖 , 𝑤𝑖𝑠, 𝑥𝑖). It 

can be nonzero even when 𝑥𝑖 is independent of both 𝑤𝑖𝑠 and 𝛽𝑖 separately. 

 

C.2.2. When Using the MOM Estimator for 𝑪𝒐𝒗(𝒙𝒊, 𝒘𝒊𝐬) 

The MOM estimator is 𝐶𝑜𝑣(𝑥𝑖 , 𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞), where 𝜽𝑠𝒞

′ 𝒓𝑖𝒞 is the MMB, a weighted 

average of respondent 𝑖’s CQ responses (for a derivation, see Appendix E.2). The bias for this 

estimator is 

 

𝐶𝑜𝑣(𝑥𝑖, 𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞) − 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) = (𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞

′ 𝒘𝒞)𝐸 (𝛽𝑖(𝑥𝑖 − 𝐸(𝑥𝑖)))

+𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))].
 

 

The first bias term vanishes if 𝛽𝑖 is independent of 𝑥𝑖 or if the MMB matches 𝐸(𝑤𝑖𝑠), i.e., 

𝜽𝑠𝒞
′ 𝐰𝒞 = 𝐸(𝑤𝑖𝑠). The second bias term is the same co-skewness term in the last subsection. 

The MMB’s effect in (partially) correcting for the bias in estimating 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) is two-

fold. First, because it is some weighted average of respondent 𝑖’s CQ responses, it cancels the 

bias induced by 𝐶𝑜𝑣(𝑥𝑖 , 𝛼𝑖). Second, when 𝛽𝑖 is correlated with 𝑥𝑖, the MMB cancels the first 

bias term above because it matches 𝐸(𝑤𝑖𝑠). 

Note that the bias does not depend on whether or not 𝛽𝑖 and 𝑤𝑖s are independent. All the 

corrections are done by the MMB. The MOM estimator, however, does not deal with the co-

skewness bias—a bias that only the semi-parametric estimator corrects for. 

 

C.3. Bias in Estimating 𝑪𝒐𝒗(𝒘𝒊𝒔, 𝒘𝒊𝒔′) 

Utilizing the fact that 𝑉𝑎𝑟(𝑤𝑖𝑠) is a special case of 𝐶𝑜𝑣(𝑤𝑖𝑠, 𝑤𝑖𝑠′), where 𝑠 = 𝑠′, we 

only show the bias in estimating 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′). 

 

C.3.1. When Ignoring Scale Use 

The estimator is 𝐶𝑜𝑣(𝑟𝑖s, 𝑟𝑖𝑠′) when scale use is ignored. Note that 
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𝐶𝑜𝑣(𝑟𝑖s, 𝑟𝑖𝑠′) 

= 𝐶𝑜𝑣(𝛼𝑖 + 𝛾 + 𝛽𝑖(𝑤𝑖𝑠 − 𝛾 + 𝜖𝑖𝑠) + 𝜂𝑖𝑠, 𝛼𝑖 + 𝛾 + 𝛽𝑖(𝑤𝑖𝑠′ − 𝛾 + 𝜖𝑖𝑠′) + 𝜂𝑖𝑠′)

= 𝜎𝛼
2 + 𝐶𝑜𝑣(𝛽𝑖(𝑤𝑖𝑠 − 𝛾), 𝛽𝑖(𝑤𝑖𝑠′ − 𝛾)) + 1(𝑠 = 𝑠′)[𝜎𝜀

2(𝑉𝑎𝑟(𝛽𝑖) + 1) + 𝐸(𝜎𝜂𝑖

2 )]

= 𝜎𝛼
2 + 1(𝑠 = 𝑠′)[𝜎𝜀

2(𝑉𝑎𝑟(𝛽𝑖) + 1) + 𝐸(𝜎𝜂𝑖
2 )]

+𝐸(𝛽𝑖
2)𝐶𝑜𝑣(𝑤𝑖𝑠, 𝑤𝑖𝑠′) + 𝑉𝑎𝑟(𝛽𝑖)[𝐸(𝑤𝑖𝑠) − 𝛾][𝐸(𝑤𝑖𝑠′) − 𝛾]

+𝐸 [(𝛽𝑖
2 − 𝐸(𝛽𝑖

2)) (𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑤𝑖𝑠′ − 𝐸(𝑤𝑖𝑠′))] − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)

+[𝐸(𝑤𝑖𝑠′) − 𝛾][𝐶𝑜𝑣(𝛽𝑖
2, 𝑤𝑖𝑠) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)] + [𝐸(𝑤𝑖𝑠) − 𝛾][𝐶𝑜𝑣(𝛽𝑖

2, 𝑤𝑖𝑠′) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)].

 

 

The bias is thus 

 

𝐶𝑜𝑣(𝑟𝑖𝑠, 𝑟𝑖𝑠′) − 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′)

= 𝜎𝛼
2 + 1(𝑠 = 𝑠′)[𝜎𝜀

2(𝑉𝑎𝑟(𝛽𝑖) + 1) + 𝐸(𝜎𝜂𝑖
2 )]

+𝑉𝑎𝑟(𝛽𝑖)𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) + 𝑉𝑎𝑟(𝛽𝑖)[𝐸(𝑤𝑖𝑠) − 𝛾][𝐸(𝑤𝑖𝑠′) − 𝛾]

+𝐸 [(𝛽𝑖
2 − 𝐸(𝛽𝑖

2)) (𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑤𝑖𝑠′ − 𝐸(𝑤𝑖𝑠′))] − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)

+[𝐸(𝑤𝑖𝑠′) − 𝛾][𝐶𝑜𝑣(𝛽𝑖
2, 𝑤𝑖𝑠) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)] + [𝐸(𝑤𝑖𝑠) − 𝛾][𝐶𝑜𝑣(𝛽𝑖

2, 𝑤𝑖𝑠′) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)].

 

 

Note that the bias induced by the stretcher depends on cross-question moments, some of 

which are centered at the means, such as in the term 𝑉𝑎𝑟(𝛽𝑖)𝐶𝑜𝑣(𝑤𝑖𝑠, 𝑤𝑖𝑠′), and some of which 

are centered at 𝛾, such as in the term 𝑉𝑎𝑟(𝛽𝑖)[𝐸(𝑤𝑖𝑠) − 𝛾][𝐸(𝑤𝑖𝑠′) − 𝛾]. 

 

C.3.2. When Ignoring 𝜷𝒊-(𝒘𝒊𝒔, 𝒘𝒊𝒔′) Dependence in Correcting for Scale Use 

Assuming 𝛽𝑖-(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) independence, the MOM estimator for 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) is (for a 

derivation, see Appendix E.3): 

 

1

𝐸(𝛽𝑖
2)

𝐶𝑜𝑣(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞, 𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞) − [1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞]𝜎𝜖

2 −
𝐸(𝜎𝜂𝑖

2 )

𝐸(𝛽𝑖
2)

[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞]. 

 

The bias for this estimator is thus 
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1

𝐸(𝛽𝑖
2)

𝐶𝑜𝑣(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞, 𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞) − 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′)

−[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞]𝜎𝜖

2 −
𝐸(𝜎𝜂𝑖

2 )

𝐸(𝛽𝑖
2)

[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞]

=
1

𝐸(𝛽𝑖
2)

𝐶𝑜𝑣 (𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞), 𝛽𝑖(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒘𝒞)) − 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′)

=
1

𝐸(𝛽𝑖
2)

{𝐸(𝛽𝑖
2)𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) + 𝑉𝑎𝑟(𝛽𝑖)[𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞

′ 𝒘𝒞][𝐸(𝑤𝑖𝑠′) − 𝜽𝑠′𝒞
′ 𝒘𝒞]

+𝐸 [(𝛽𝑖
2 − 𝐸(𝛽𝑖

2)) (𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑤𝑖𝑠′ − 𝐸(𝑤𝑖𝑠′))] − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)

+[𝐸(𝑤𝑖𝑠′) − 𝜽𝑠′𝒞
′ 𝒘𝒞][𝐶𝑜𝑣(𝛽𝑖

2 , 𝑤𝑖𝑠) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)]

+[𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞
′ 𝒘𝒞][𝐶𝑜𝑣(𝛽𝑖

2, 𝑤𝑖𝑠′) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)]} − 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′)

=
1

𝐸(𝛽𝑖
2)

{𝑉𝑎𝑟(𝛽𝑖)[𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞
′ 𝒘𝒞][𝐸(𝑤𝑖𝑠′) − 𝜽𝑠′𝒞

′ 𝒘𝒞]

+𝐸 [(𝛽𝑖
2 − 𝐸(𝛽𝑖

2)) (𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑤𝑖𝑠′ − 𝐸(𝑤𝑖𝑠′))] − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)

+[𝐸(𝑤𝑖𝑠′) − 𝜽𝑠′𝒞
′ 𝒘𝒞][𝐶𝑜𝑣(𝛽𝑖

2 , 𝑤𝑖𝑠) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠)]

+[𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞
′ 𝒘𝒞][𝐶𝑜𝑣(𝛽𝑖

2, 𝑤𝑖𝑠′) − 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠′)]}.

 

 

When 𝛽𝑖 and (𝑤𝑖𝑠 , 𝑤𝑖𝑠′) are independent, the bias vanishes if the MMB matches either 

𝐸(𝑤𝑖𝑠) or 𝐸(𝑤𝑖𝑠′). When 𝛽𝑖 and (𝑤𝑖𝑠 , 𝑤𝑖𝑠′) are dependent, the estimator is biased (by the second 

and third terms) even if the MMBs match both 𝐸(𝑤𝑖𝑠) and 𝐸(𝑤𝑖𝑠′). The semi-parametric 

estimator or the comprehensive MLE estimator is needed to fully correct the bias. 

 

D. Semi-parametric Estimators 

This appendix details our semi-parametric estimators: we specify the parametric model 

for 𝛼𝑖 , 𝛽𝑖, 𝜖𝑖𝑐, and 𝜂𝑖𝑐 from Section III.D, and we approximate with finite-order polynomials the 

unknown relationships between functions of 𝑤𝑖s relevant to the SWB moments of interest and 𝛽𝑖. 

Our procedure uses the �̂�𝑖,𝑂𝐿𝑆 estimates, together with the estimated distribution of 𝛽𝑖, to correct 

for noise in the �̂�𝑖,𝑂𝐿𝑆 estimates. It then uses the noise-corrected �̂�𝑖,𝑂𝐿𝑆’s to estimate the 

relationship between the function of 𝑤𝑖s and 𝛽𝑖; this aggregate relationship can be estimated 

adequately despite the uncertainty in the individual-level �̂�𝑖,𝑂𝐿𝑆’s. Below we summarize the steps 

of our estimator, followed by full details. 

 

Step 1: Eliminating the shifter 
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Removing bias due to the shifter is straightforward. While subtracting just a single CQ 

response, 𝑟𝑖s − 𝑟𝑖𝑐, would eliminate the shifter (and center), we instead achieve the same goal by 

subtracting the mean of CQ responses in order to minimize the variance of the added errors: 

 

(D.1) 𝑟𝑖s − �̅�𝑖𝒞 = 𝛽𝑖(𝑤𝑖s − �̅�𝒞 + 𝜖𝑖s − 𝜖�̅�𝒞) + 𝜂𝑖s − �̅�𝑖𝒞, 

  

where �̅�𝑖𝒞 ≡
1

𝐶
∑ 𝑟𝑖𝑐

𝐶
𝑐=1 , 𝜖�̅�𝒞 ≡

1

𝐶
∑ 𝜖𝑖𝑐

𝐶
𝑐=1 , and �̅�𝑖𝒞 ≡

1

𝐶
∑ 𝜂𝑖𝑐

𝐶
𝑐=1 . We refer to �̅�𝑖𝒞 as the 

“benchmark.” 

The remaining steps of the procedure adjust for bias from the stretcher (see Appendix C 

for details on the bias). 

 

Step 2: Calculate consistent estimates for 𝑬(𝜷𝒊
𝒌). 

We plug in our estimate of 𝜎𝛽 from the MLE in Section IV into the normal distribution 

from Section III.D to obtain an estimated distribution of 𝛽𝑖. We then calculate however many 

moments of the distribution of 𝛽𝑖 we will need for subsequent steps: �̂�(𝛽𝑖) (which is equal to 1 

by construction), �̂�(𝛽𝑖
2), �̂�(𝛽𝑖

3), etc. 

 

Step 3: Calculate consistent estimates for 𝑬(𝜷𝒊
𝒌|�̂�𝒊,𝑶𝑳𝑺). 

We derive the conditional distribution of �̂�𝑖,𝑂𝐿𝑆|𝛽𝑖, which is a linear function of the CQ 

errors (see Section D.1 below). Therefore, �̂�𝑖,𝑂𝐿𝑆|𝛽𝑖 is normally distributed with mean zero and 

variance that is a known linear function of 𝜎𝜖
2 and 𝜎𝜂𝑖

2 . We then numerically apply Bayes’ rule 

using the estimated distribution of 𝛽𝑖 to obtain an estimated distribution of 𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆. From this, 

we calculate consistent estimates for 𝐸(𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆), 𝐸(𝛽𝑖
2|�̂�𝑖,𝑂𝐿𝑆), 𝐸(𝛽𝑖

3|�̂�𝑖,𝑂𝐿𝑆), etc. 

The steps up until here are computationally intensive, but we highlight that (i) they rely 

only on the CQ responses, and (ii) they need only be performed once, and then the estimated 

moments of 𝛽𝑖 and 𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆 can be stored with the dataset for use with whatever future research 

questions may come up with the data. In contrast, steps 4-6 (see below) are computationally 

quick. 

 

Intermezzo: Model the correlation between common-scale SWB and the stretcher. 
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The subsequent steps of the econometric procedure depend on the SWB moment of 

interest. Before proceeding with those steps, we formulate a framework within which we can 

describe the remainder of the econometric procedure in general for all four SWB moments we 

study, as well as other SWB moments we do not study in this paper. 

For each of the four SWB moments of interest, we define a related quantity called 𝜓𝑖, 

given in the table below. It involves 𝑤𝑖s − �̅�𝒞 (defined in step 1), and its mean differs from the 

SWB moment only by estimable quantities that are not functions of the SWB moment. Steps 4-5 

below aim to estimate the mean 𝐸(𝜓𝑖), while step 6 adjusts the resulting estimate to obtain an 

estimate of the SWB moment. The reason we focus on 𝜓𝑖 is that we can learn about it using its 

reported-SWB analog, which we call 𝛹𝑖, also defined in the table below. Since 𝛹𝑖 involves 𝑟𝑖s −

�̅�𝑖𝒞, it does not depend on the shifter (or the center), and the only scale-use heterogeneity we need 

to deal with is the stretcher. 

 

Table D.1. SWB Moments and Corresponding 𝝍𝒊, 𝜳𝒊, and 𝑬(𝜳𝒊|𝜷𝒊, �̂�𝒊,𝑶𝑳𝑺) 

SWB Moment  𝜓𝑖  𝛹𝑖  𝐸(𝛹𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) 

𝐸(𝑤𝑖s)  𝑤𝑖s − �̅�𝒞  𝑟𝑖s − �̅�𝑖𝒞 

 

∑ 𝐴𝑘𝑠𝛽𝑖
𝑘+1

𝐾

𝑘=0

 

𝐶𝑜𝑣(𝑥𝑖, 𝑤𝑖s)  (𝑤𝑖s − �̅�𝒞)𝑥𝑖  (𝑟𝑖s − �̅�𝑖𝒞)𝑥𝑖s 

 

∑ 𝐴𝑘𝑠𝛽𝑖
𝑘+1

𝐾

𝑘=0

 

𝐶𝑜𝑣(𝑤𝑖s, 𝑤𝑖s′)  (𝑤𝑖s − �̅�𝒞)(𝑤𝑖s′ − �̅�𝒞)  (𝑟𝑖s − �̅�𝑖𝒞)(𝑟𝑖s′ − �̅�𝑖𝒞) 

 

∑ 𝐴𝑘𝑠𝛽𝑖
𝑘+2

𝐾

𝑘=0

+ 𝑉1 

𝑉𝑎𝑟(𝑤𝑖s)  (𝑤𝑖s − �̅�𝒞)
2  (𝑟𝑖s − �̅�𝑖𝒞)

2 

 

∑ 𝐴𝑘𝑠𝛽𝑖
𝑘+2

𝐾

𝑘=0

+ 𝑉1 + 𝑉2 

 

To model the relationship between 𝜓𝑖 and 𝛽𝑖, we approximate 𝐸(𝜓𝑖|𝛽𝑖) as a polynomial 

in 𝛽𝑖: 

 

(D.2) 𝐸(𝜓𝑖|𝛽𝑖) = 𝐴0s + 𝐴1s𝛽𝑖 + 𝐴2s𝛽𝑖
2 + ⋯+ 𝐴𝐾s𝛽𝑖

𝐾 = ∑ 𝐴𝑘s𝛽𝑖
𝑘

𝐾

𝑘=0

, 

  

where 𝐴0𝑠, 𝐴1s, 𝐴2s, … , 𝐴𝐾s are unknown parameters. 
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In what follows, we will use the law of iterated expectations to recover 𝐸(𝜓𝑖) as a 

function of the 𝐴𝑘s’s and the moments of 𝛽𝑖: 𝐸(𝜓𝑖) = 𝐸[𝐸(𝜓𝑖|𝛽𝑖)]. We estimated the moments 

of 𝛽𝑖 in step 2, and we will estimate the 𝐴𝑘s’s in step 4. In step 5, plugging these in will give us 

an estimate of 𝐸(𝜓𝑖). 

We cannot use equation (D.2) to estimate the 𝐴𝑘s’s because both 𝑤𝑖s and 𝛽𝑖 are 

unobserved, but we can instead work with 𝐸(𝛹𝑖|�̂�𝑖,𝑂𝐿𝑆), which depends only on observables. To 

derive that conditional expectation, we begin by considering 𝐸(𝛹𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆), and we claim that 

conditioning on 𝛽𝑖, �̂�𝑖,𝑂𝐿𝑆 adds no information about �̅�𝑖𝐶: 

 

(D.3) 𝐸(𝛹𝑖|𝛽𝑖, �̂�𝑖,𝑂𝐿𝑆) = 𝐸(𝛹𝑖|𝛽𝑖). 

  

There are two approaches to justify equation (D.3). The first approach, while relatively 

straightforward, necessitates dividing the CQs into two sets, and separately calculating the 

benchmark �̅�𝑖𝒞 from step 1 and the �̂�𝑖,𝑂𝐿𝑆’s using these distinct sets. The second approach 

involves more derivations (elaborated in Section D.4 below), but provides the advantage of using 

all CQs for calculating both �̅�𝑖𝒞 and the �̂�𝑖,𝑂𝐿𝑆’s. We adopt the second approach because it offers 

more efficient utilization of our data. 

Equation (D.3) is useful because its right-hand side can be calculated using equation 

(D.2). For the first two moments of SWB in the table, it is equal to 𝐸(𝜓𝑖|𝛽𝑖) multiplied by 𝛽𝑖. 

For example, when the SWB moment is the mean, 

 

𝐸(𝛹𝑖|𝛽𝑖) = 𝐸(𝑟𝑖s − �̅�𝑖𝒞|𝛽𝑖) = 𝐸[𝛽𝑖(𝑤𝑖s − �̅�𝒞)|𝛽𝑖] = 𝛽𝑖𝐸[(𝑤𝑖s − �̅�𝒞)|𝛽𝑖] = 𝛽𝑖𝐸(𝜓𝑖|𝛽𝑖). 
 

For the other two SWB moments in the table, 𝐸(𝛹𝑖|𝛽𝑖) is equal to 𝐸(𝜓𝑖|𝛽𝑖) multiplied 

by 𝛽𝑖
2, plus additional term(s). The table above shows the resulting expression for 𝐸(𝛹𝑖|𝛽𝑖) =

𝐸(𝛹𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) for each of the four SWB moments of interest after substituting for 𝐸(𝜓𝑖|𝛽𝑖) 

using equation (D.2). The additional terms for the last two moments of SWB are related to 

variances: 

 

𝑉1 =
1

𝐶
[𝜎𝜖 

2𝐸(𝛽𝑖
2) + 𝐸 (𝜎𝜂𝑖 

2 )] 
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𝑉2 = 𝜎𝜖 
2𝐸(𝛽𝑖

2) + 𝐸 (𝜎𝜂𝑖 

2 ). 

 

To obtain 𝐸(𝛹𝑖|�̂�𝑖,𝑂𝐿𝑆), we apply the law of iterated expectations: 𝐸(𝛹𝑖|�̂�𝑖,𝑂𝐿𝑆) =

𝐸[𝐸(𝛹𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)|�̂�𝑖,𝑂𝐿𝑆]. For example, when the SWB moment of interest is the mean, 

 

(D.4) 𝐸(𝛹𝑖|�̂�𝑖,𝑂𝐿𝑆) = 𝐸 (∑ 𝐴𝑘s𝛽𝑖
𝑘+1

𝐾

𝑘=0

|�̂�𝑖,𝑂𝐿𝑆) = ∑ 𝐴𝑘s𝐸(𝛽𝑖
𝑘+1|�̂�𝑖,𝑂𝐿𝑆)

𝐾

𝑘=0

. 

  

In general, for any SWB moment of interest, 𝐸(𝛹𝑖|�̂�𝑖,𝑂𝐿𝑆) will equal the expression in 

the table above for 𝐸(𝛹𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆), but with each 𝛽𝑖 term replaced by its expectation conditional 

on �̂�𝑖,𝑂𝐿𝑆. 

 

Step 4: Estimate 𝑨𝒌𝒔. 

For the first two moments of SWB in the table above, based on equation (D.4) we can 

consistently estimate the 𝐴𝑘s’s by the OLS regression of 𝛹𝑖 on �̂�(𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆), �̂�(𝛽𝑖
2|�̂�𝑖,𝑂𝐿𝑆), etc., 

from step 3, without a constant term.10 For example, when the SWB moment of interest is the 

mean, we run a regression of 𝑟𝑖s − �̅�𝑖𝒞 on the estimated moments of 𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆 without a constant 

term. 

For the covariance between two SWB questions, we need to construct an estimate of 

𝐸(𝑉1|�̂�𝑖,𝑂𝐿𝑆), which we do by plugging in our estimates of 𝜎𝜖
2, 𝐸 (𝜎𝜂𝑖 

2 ), and 𝐸(𝛽𝑖
2|�̂�𝑖,𝑂𝐿𝑆). We 

then run the same regression as above but with the dependent variable being 𝛹𝑖 minus the 

estimate of 𝐸(𝑉1|�̂�𝑖,𝑂𝐿𝑆). Note that 𝜎𝜖
2 and 𝐸 (𝜎𝜂𝑖 

2 ) are estimated from the data on CQs, rather 

than the SWB questions. That is because the response-error variances for the SWB questions are 

not identified, as discussed in the paper in the context of the comprehensive MLE estimator for 

the variance of SWB and the covariance between two SWB questions. 

 
10 While both OLS and weighted least squares (WLS) generate consistent estimates, one might expect WLS to be 

more efficient because, from equation (D.1), the error in 𝑟𝑖s − �̅�𝑖𝒞 is 𝜂𝑖s − �̅�𝑖𝒞 + 𝛽𝑖(𝜖𝑖s − 𝜖�̅�𝒞), which depends on 𝛽𝑖  

and is therefore heteroskedastic. However, in simulations, we find that OLS gives more precise estimates, 

potentially because the weights in WLS are not robustly estimated when 𝛽𝑖  is small. 
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For the variance of SWB, we proceed similarly, but we need to also subtract an estimate 

of 𝐸(𝑉2|�̂�𝑖,𝑂𝐿𝑆) before running the regression. 

 

Step 5: Plug in �̂�𝒌s and �̂�(𝜷𝒊
𝒌). 

Applying the law of iterated expectations to 𝐸(𝜓𝑖|𝛽𝑖) and using equation (D.2) yields the 

SWB moment of interest, 𝐸(𝜓𝑖) = 𝐸[𝐸(𝜓𝑖|𝛽𝑖)], as a function of the 𝐴𝑘s’s and moments of 𝛽𝑖. 

For example, for mean SWB, 

 

𝐸(𝜓𝑖) = 𝐸(𝑤𝑖s − �̅�𝒞) = 𝐸[𝐸(𝑤𝑖s − �̅�𝒞|𝛽𝑖)] = ∑ 𝐴𝑘s𝐸(𝛽𝑖
𝑘)

𝐾

𝑘=0

. 

 

Substituting the estimated 𝐴𝑘s’s from step 4 and estimated moments of 𝛽𝑖 from step 2 

into the above expression gives a consistent estimate of 𝐸(𝜓𝑖). 

 

Step 6: Estimate the SWB moment by adjusting the estimate of 𝑬(𝝍𝒊). 

Each of the four SWB moments can be decomposed into 𝐸(𝜓𝑖) and a function of 

estimable quantities: 

 

𝐸(𝑤𝑖s) = 𝐸(𝑤𝑖s − �̅�𝒞) + �̅�𝒞 

𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖s) = 𝐸[(𝑤𝑖s − �̅�𝒞)𝑥𝑖] + [�̅�𝒞 − 𝐸(𝑤𝑖s)]𝐸(𝑥𝑖) 

𝐶𝑜𝑣(𝑤𝑖s, 𝑤𝑖s′) = 𝐸[(𝑤𝑖s − �̅�𝒞)(𝑤𝑖s′ − �̅�𝒞)] − [𝐸(𝑤𝑖s) − �̅�𝒞][𝐸(𝑤𝑖s′) − �̅�𝒞] 

𝑉𝑎𝑟(𝑤𝑖s) = 𝐸[(𝑤𝑖s − �̅�𝒞)2] − [𝐸(𝑤𝑖s) − �̅�𝒞]2. 

 

We estimate the SWB moments by substituting our estimates of 𝐸(𝜓𝑖) for the first right-

hand-side term in each equation above, �̅�𝑖𝒞 for �̅�𝒞, the sample mean of 𝑥𝑖 for 𝐸(𝑥𝑖), and the 

estimated SWB mean from the first equation above for 𝐸(𝑤𝑖s) in the other equations.  

 

D.1. Estimating 𝑬(𝜷𝒊
𝒌|�̂�𝒊,𝑶𝑳𝑺) 

To estimate 𝐸(𝛽𝑖
𝑘|�̂�𝑖,𝑂𝐿𝑆), as described by step 3 above, we need the density of 𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆, 

which, by Bayes’ rule, is 
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𝑓(𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆) =
𝑓(�̂�𝑖,𝑂𝐿𝑆|𝛽𝑖)𝑓(𝛽𝑖)

∫ 𝑓(𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)𝑑𝛽𝑖

. 

 

We estimate 𝑓(𝛽𝑖) as part of our CQ-only MLE. To find 𝑓(�̂�𝑖,𝑂𝐿𝑆|𝛽𝑖), we note that �̂�𝑖,𝑂𝐿𝑆 

estimates 𝛽𝑖 from the individual-level OLS-regression of 𝑟𝑖𝑐 on 𝑟‾𝑐: 

 

𝑟𝑖𝑐 = 𝒶𝑖 + 𝛽𝑖𝑟‾𝑐 + 𝑢𝑖𝑐, 

 

where 𝒶𝑖 is the coefficient for the constant term, 𝑟‾𝑐 =
1

𝐼
∑ 𝑟𝑖𝑐

𝐼
𝑖=1 , and 𝑢𝑖𝑐 is the regression error. 

Thus, the exact expression for �̂�𝑖,𝑂𝐿𝑆 is 

 

�̂�𝑖,𝑂𝐿𝑆 =
∑ (𝑟𝑖𝑐 −

1
𝐶

∑ 𝑟𝑖𝑐
𝐶
𝑐=1 )𝐶

𝑐=1 (𝑟‾𝑐 −
1
𝐶

∑ 𝑟‾𝑐
𝐶
𝑐=1 )

∑ (𝑟‾𝑐 −
1
𝐶

∑ 𝑟‾𝑐
𝐶
𝑐=1 )

2
𝐶
𝑐=1

=

1
𝐶

∑ 𝑟𝑖𝑐
𝐶
𝑐=1 (𝑟‾𝑐 −

1
𝐶

∑ 𝑟‾𝑐
𝐶
𝑐=1 )

1
𝐶

∑ (𝑟‾𝑐 −
1
𝐶

∑ 𝑟‾𝑐
𝐶
𝑐=1 )

2
𝐶
𝑐=1

≡ 𝐳′𝒓𝑖𝒞,

 

 

where 𝐳 ≡ 𝐦𝒞/𝑣, 𝐦𝒞 ≡ {𝑚𝑐}𝑐=1
𝐶 ≡ {

1

𝐶
(𝑟‾𝑐 −

1

𝐶
∑ 𝑟‾𝑐

𝐶
𝑐=1 )}

𝑐=1

𝐶
, and 𝑣 ≡

1

𝐶
∑ (𝑟‾𝑐 −

1

𝐶
∑ 𝑟‾𝑐

𝐶
𝑐=1 )

2
𝐶
𝑐=1 . 

To simplify the expression for �̂�𝑖,𝑂𝐿𝑆, note that 𝐳′𝟏𝐶 = 0, where 𝟏𝐶 is the 𝐶-dimensional 

vector full of ones, and 𝐳′𝒘𝒞 ≈ 1. The second expression holds because 

 

𝐦𝒞
′ 𝒘𝒞 − 𝑣 = ∑𝑤𝑐

𝐶

𝑐=1

1

𝐶
(𝑟‾𝑐 −

1

𝐶
∑𝑟‾𝑐

𝐶

𝑐=1

) −
1

𝐶
∑(𝑟‾𝑐 −

1

𝐶
∑𝑟‾𝑐

𝐶

𝑐=1

)

2𝐶

𝑐=1

=
1

𝐶
∑(𝑟‾𝑐 −

1

𝐶
∑𝑟‾𝑐

𝐶

𝑐=1

)

𝐶

𝑐=1

(𝑤𝑐 − 𝑟‾𝑐 +
1

𝐶
∑𝑟‾𝑐

𝐶

𝑐=1

)

=
1

𝐶
∑(𝑟‾𝑐 −

1

𝐶
∑𝑟‾𝑐

𝐶

𝑐=1

)

𝐶

𝑐=1

(𝑤𝑐 − 𝑟‾𝑐)

≈ 0,
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where the approximation holds because 𝑟‾𝑐 = 𝑤𝑐 + 𝒪(𝐼−1 2⁄ ) and becomes exact as 𝐼 → ∞. 

Plugging 𝐳′𝟏𝐶 = 0 and 𝐳′𝒘𝒞 ≈ 1 into the expression of �̂�𝑖,𝑂𝐿𝑆, we get 

 

�̂�𝑖,𝑂𝐿𝑆 = 𝐳′𝒓𝑖𝒞

= 𝐳′[(𝛼𝑖 + 𝛽𝑖(1 − 𝛾))𝟏𝐶 + 𝛽𝑖(𝒘𝒞 + 𝝐𝑖𝒞) + 𝜼𝑖𝒞]

≈ 𝛽𝑖 + 𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞.

 

 

This shows that �̂�𝑖,𝑂𝐿𝑆 is (approximately) the individual’s true stretcher 𝛽𝑖 plus a linear 

combination of the individual’s 𝐶-dimensional vectors of CQ response errors (𝝐𝑖𝒞 , 𝜼𝑖𝒞). The 

approximation should be quite accurate when the number of respondents is not small. 

Since 𝜖𝑖𝑐 and 𝜂𝑖𝑐 are independently distributed normals, �̂�𝑖,𝑂𝐿𝑆|𝛽𝑖 is (approximately) 

normally distributed with density 

 

𝑓(�̂�𝑖,𝑂𝐿𝑆|𝛽𝑖) = √
𝐶𝑣

2𝜋(𝛽𝑖
2𝜎𝜖

2 + 𝜎𝜂𝑖
2 )

𝑒
−

𝐶𝑣
2

(�̂�𝑖,𝑂𝐿𝑆−𝛽𝑖)
2

𝛽𝑖
2𝜎𝜖

2+𝜎𝜂𝑖
2

. 

 

To avoid the numerical integration in the denominator of 𝑓(𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆) and the numerical 

integration for calculating the expectation 𝐸(𝛽𝑖
𝑘|�̂�𝑖,𝑂𝐿𝑆), we use Hamiltonian Monte Carlo with 

hierarchical modeling to draw samples for 𝛽𝑖|�̂�𝑖,𝑂𝐿𝑆 and then raise the sample to the 𝑘-th power 

to estimate 𝐸(𝛽𝑖
𝑘|�̂�𝑖,𝑂𝐿𝑆). These moments vary across individuals because �̂�𝑖,𝑂𝐿𝑆 varies across 

individuals. 

 

D.2. Optimal Benchmarking 

We use the term benchmarking to mean subtracting a linear combination of CQ ratings 

from each respondent’s SWB rating. Step 1 above is benchmarking with uniform weights. Here 

we show that this choice of the weights is optimal. 

 We perform benchmarking first and foremost to eliminate the shifter 𝛼𝑖 in the SWB 

rating 𝑟𝑖s and the (stretcher-scaled) center (1 − 𝛽𝑖)𝛾. Subtracting even a single CQ achieves the 

goal: 
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𝑟𝑖s − 𝑟𝑖𝑐 = 𝛽𝑖(𝑤𝑖s − 𝑤𝑐 + 𝜖𝑖s − 𝜖𝑖𝑐) + 𝜂𝑖s − 𝜂𝑖𝑐. 

 

The differencing introduces additional noise because the differenced quantity, 𝑟𝑖s − 𝑟𝑖𝑐, 

includes response errors from both SWB and CQ ratings, whereas 𝑟𝑖s includes only SWB ratings’ 

errors. To minimize the noise, we subtract a weighted average of CQ ratings—i.e., a benchmark, 

as defined above—instead of a single CQ rating. The weights in the benchmark have to sum to 

unity so that the cancellation of the shifter and the center is retained. The mean-matched 

benchmark discussed in the paper is a special type of benchmark that also sets the mean of the 

benchmark to some target value for removing certain biases (see Appendix E.2.1 for details). 

The weights are then chosen to minimize the noise introduced from subtracting the benchmark. 

To achieve this objective, we choose 𝜽𝑠𝒞 to minimize the noise variance of the resulting 

benchmarked SWB rating, 𝑉𝑎𝑟(𝑟𝑖s − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞), where 𝜽𝑠𝒞 denotes a 𝐶-dimensional vector of 

weights for benchmarking SWB rating 𝑠 using CQs in set 𝒞, subject to the constraint: 𝜽𝑠𝒞
′ 𝟏𝐶 =

1. 

Since the variance of the benchmarked SWB rating is 

 

𝑉𝑎𝑟(𝑟𝑖s − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)

= 𝑉𝑎𝑟[𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞) + 𝛽𝑖(𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞) + 𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞]

= 𝑉𝑎𝑟[𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)] + 𝑉𝑎𝑟[𝛽𝑖(𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞)] + 𝑉𝑎𝑟(𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞)

= 𝑉𝑎𝑟[𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)] + 𝑉𝑎𝑟(𝛽𝑖𝜖𝑖𝑠) + 𝑉𝑎𝑟(𝜂𝑖𝑠) + [𝜎𝜖

2𝐸(𝛽𝑖
2) + 𝐸(𝜎𝜂𝑖

2 )]𝜽𝑠𝒞
′ 𝜽𝑠𝒞 ,

 

 

only the last term is relevant for the minimization problem. 

Minimizing the last term subject to the sum-to-unity constraint gives the optimal 

benchmarking weights:  

𝜽𝑠𝒞
∗ =

𝟏𝐶

𝐶
, 

which shows that the benchmarking in step 1 above is optimal. 

 

D.3. Derivation of Semi-parametric Estimators 

This subsection details the derivation of the semi-parametric estimators for the common-

scale SWB’s moments listed in Table D.1. 
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D.3.1. Semi-parametric Estimator for 𝑬(𝒘𝒊𝒔) 

Since 

 

𝐸(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞|�̂�𝑖) = 𝐸[𝐸(𝑟𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)|�̂�𝑖,𝑂𝐿𝑆]

= 𝐸[𝐸(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞|𝛽𝑖)|�̂�𝑖,𝑂𝐿𝑆]

= 𝐸[𝛽𝑖𝐸(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞|𝛽𝑖)|�̂�𝑖,𝑂𝐿𝑆]

≈ ∑ 𝐴𝑘𝑠

𝐾𝐸𝑤

𝑘=0

𝐸(𝛽𝑖
𝑘+1|�̂�𝑖,𝑂𝐿𝑆),

 

 

where the 2nd equality follows from equation (D.3) and the last approximates 𝐸(𝑤𝑖𝑠 −

𝜽𝑠𝒞
′ 𝒘𝒞|𝛽𝑖) with ∑ 𝐴𝑘𝑠

𝐾𝐸𝑤
𝑘=0 𝛽𝑖

𝑘, the 𝐴𝑘s’s can be estimated by regressing (without a constant term) 

the benchmarked rating (𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞) on 𝐸(𝛽𝑖

𝑘+1|�̂�𝑖,𝑂𝐿𝑆) for 𝑘 = 0,⋯ , 𝐾𝐸𝑤. In practice, we 

choose 𝐾𝐸𝑤 = 1 and provide sufficient conditions for the satisfaction of the equation (D.3) in 

Section D.4 of this appendix. 

With the estimated 𝐴𝑘𝑠’s, we can estimate 𝐸(𝑤𝑖𝑠) by 

 

�̂�(𝑤𝑖𝑠) = ∑ �̂�𝑘𝑠

𝐾𝐸𝑤

𝑘=0

�̂�(𝛽𝑖
𝑘) + 𝜽𝑠𝒞

′ �̂�𝒞 , 

 

where 𝐸(𝛽𝑖
𝑘)’s can be estimated based on the output of the CQ-only MLE and �̂�𝒞 =

1

𝐼
∑ 𝒓𝑖𝒞

𝐼
𝑖=1 . 

 

D.3.2. Semi-parametric Estimator for 𝑪𝒐𝒗(𝒙𝒊, 𝒘𝒊𝒔) 

Note that 

 

𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)𝑥𝑖|�̂�𝑖,𝑂𝐿𝑆) = 𝐸 [𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) |�̂�𝑖,𝑂𝐿𝑆]

= 𝐸[𝐸((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)𝑥𝑖|𝛽𝑖)|�̂�𝑖,𝑂𝐿𝑆]

= 𝐸[𝛽𝑖𝐸((𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)𝑥𝑖|𝛽𝑖)|�̂�𝑖,𝑂𝐿𝑆]

≈ ∑ 𝐴𝑘𝑠𝑥

𝐾𝐶𝑜𝑣𝑤𝑥

𝑘=0

𝐸(𝛽𝑖
𝑘+1|�̂�𝑖,𝑂𝐿𝑆),
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where the 2nd equality uses a modified version of equation (D.3) and the last approximates 

𝐸((𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)𝑥𝑖|𝛽𝑖) with ∑ 𝐴𝑘𝑠𝑥

𝐾𝐶𝑜𝑣𝑤𝑥
𝑘=0 𝛽𝑖

𝑘. This suggests that we can estimate the 𝐴𝑘𝑠𝑥’s by 

regressing (without a constant term) (𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)𝑥𝑖 on 𝐸(𝛽𝑖

𝑘+1|�̂�𝑖,𝑂𝐿𝑆) for 𝑘 = 0,… ,𝐾𝐶𝑜𝑣𝑤𝑥. 

We set 𝐾𝐶𝑜𝑣𝑤𝑥 to 1 in practice and provide sufficient conditions for the satisfaction of the 

version of equation (D.3) in Section D.4 below. 

With the estimated 𝐴𝑘𝑠𝑥’s we can estimate 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) by 

 

𝐶𝑜�̂�(𝑤𝑖𝑠 , 𝑥𝑖) = ∑ �̂�𝑘𝑠𝑥

𝐾𝐶𝑜𝑣𝑤𝑥

𝑘=0

�̂�(𝛽𝑖
𝑘) + [𝜽𝑠𝒞

′ 𝒘𝒞 − �̂�(𝑤𝑖𝑠)]�̂�(𝑥𝑖), 

 

where �̂�(𝑤𝑖𝑠) is estimated using the estimator in the last subsection and �̂�(𝑥𝑖) =
1

𝐼
∑ 𝑥𝑖

𝐼
𝑖=1 . 

 

D.3.3. Semi-parametric Estimator for 𝑪𝒐𝒗(𝒘𝒊𝒔, 𝒘𝒊𝒔′) 

As 𝑉𝑎𝑟(𝑤𝑖𝑠) = 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠), we only derive the semi-parametric estimator for 

𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) while allowing for 𝑠′ = 𝑠 below. 

Because 

 

𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)|�̂�𝑖,𝑂𝐿𝑆)

= 𝐸 [𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)|𝛽𝑖 , �̂�𝑖) |�̂�𝑖,𝑂𝐿𝑆]

= 𝐸 [𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)|𝛽𝑖) |�̂�𝑖,𝑂𝐿𝑆]

= 𝐸 (𝛽𝑖
2𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞)(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞)|𝛽𝑖) |�̂�𝑖,𝑂𝐿𝑆)

+[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞]𝜎𝜖

2𝐸(𝛽𝑖
2|�̂�𝑖,𝑂𝐿𝑆) + [1(𝑠 = 𝑠′) + 𝜽𝑠𝒞

′ 𝜽𝑠′𝒞]𝐸(𝜎𝜂𝑖
2 )

≈ ∑ 𝐴𝑘𝑠𝑠′

𝐾𝐶𝑜𝑣𝑤𝑤

𝑘=0

𝐸(𝛽𝑖
𝑘+2|�̂�𝑖,𝑂𝐿𝑆)

+1(𝑠 = 𝑠′)[𝜎𝜖
2𝐸(𝛽𝑖

2|�̂�𝑖,𝑂𝐿𝑆) + 𝐸(𝜎𝜂𝑖
2 )] + 𝜽𝑠𝒞

′ 𝜽𝑠′𝒞[𝜎𝜖
2𝐸(𝛽𝑖

2|�̂�𝑖,𝑂𝐿𝑆) + 𝐸(𝜎𝜂𝑖
2 )],

 

 

where the 2nd equality uses a modified version of equation (D.3) and the last approximates 

𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒘𝒞)|𝛽𝑖) with ∑ 𝐴𝑘𝑠𝑠′
𝐾𝐶𝑜𝑣𝑤𝑤
𝑘=0 𝛽𝑖

𝑘, the 𝐴𝑘𝑠𝑠′’s can be estimated by 

regressing (without a constant term) 
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(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞) − 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞[𝜎𝜖

2𝐸(𝛽𝑖
2|�̂�𝑖,𝑂𝐿𝑆) + 𝐸(𝜎𝜂𝑖

2 )]

− 1(𝑠 = 𝑠′)[𝜎𝜖
2𝐸(𝛽𝑖

2|�̂�𝑖,𝑂𝐿𝑆) + 𝐸(𝜎𝜂𝑖
2 )] 

 

on 𝐸(𝛽𝑖
𝑘+2|�̂�𝑖,𝑂𝐿𝑆) for 𝑘 = 0,… , 𝐾𝐶𝑜𝑣𝑤𝑤. We set 𝐾𝐶𝑜𝑣𝑤𝑤 = 2 in practice and provide sufficient 

conditions for the satisfaction of the version of equation (D.3) in Section D.4 of this appendix. 

With the estimated 𝐴𝑘𝑠𝑠′’s we can estimate 𝐶𝑜𝑣(𝑤𝑖𝑠, 𝑤𝑖𝑠′) by 

 

𝐶𝑜�̂�(𝑤𝑖𝑠, 𝑤𝑖𝑠′) = ∑ �̂�𝑘𝑠𝑠′

𝐾𝐶𝑜𝑣𝑤𝑤

𝑘=0

�̂�(𝛽𝑖
𝑘) − [�̂�(𝑤𝑖𝑠) − 𝜽𝑠𝒞

′ �̂�𝒞][�̂�(𝑤𝑖𝑠′) − 𝜽𝑠′𝒞
′ �̂�𝒞]. 

 

D.4. Sufficient Conditions for Equation (D.3) 

To satisfy equation (D.3), as discussed above, one can use disjoint sets of CQs for 

calculating �̂�𝑖,𝑂𝐿𝑆 and the benchmark. Here we provide sufficient conditions for various versions 

of equation (D.3) where benchmarking and calculation of �̂�𝑖,𝑂𝐿𝑆 use the same set of CQs.  

The discussion shows that, among other things, uniform benchmarking used by step 1 

satisfies these conditions. To briefly see why, recall from Section D.1 above, (�̂�𝑖,𝑂𝐿𝑆 − 𝛽𝑖)|𝛽𝑖  is 

(i) a weighted average of response errors where the weights (𝐳) sum to zero, and (ii) normally 

distributed. Moreover, 𝐶𝑜𝑣(𝜽𝑠𝒞
′ 𝒓𝑖𝒞, �̂�𝑖,𝑂𝐿𝑆 − 𝛽𝑖|𝛽𝑖) is proportional to the dot product of 𝜽𝑠𝒞  and 

𝐳. The covariance thus equals zero when we use equal weights: 𝜽𝑠𝒞
′ =

1

𝐶
𝟏𝑪. And because, 

conditional on 𝛽𝑖, 𝜽𝑠𝒞
′ 𝒓𝑖𝒞 and �̂�𝑖,𝑂𝐿𝑆 − 𝛽𝑖 are jointly normally distributed, zero covariance 

implies independence. The conditional independence between these two quantities further 

implies equation (D.3): the conditional mean-independence of �̂�𝑖,𝑂𝐿𝑆 and certain functions of 

𝜽𝑠𝒞
′ 𝒓𝑖𝒞. 

 

D.4.1. For Semi-parametric Estimator of 𝑬(𝒘𝒊𝒔) 

The semi-parametric estimator for 𝐸(𝑤𝑖𝑠) assumes equation (D.3), the conditional (on 𝛽𝑖) 

mean independence of �̂�𝑖,𝑂𝐿𝑆 and (𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞). A sufficient condition for this assumption is 

that �̂�𝑖,𝑂𝐿𝑆 is conditionally independent of (𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞). As shown in Section D.1 of this 
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appendix, (�̂�𝑖,𝑂𝐿𝑆 − 𝛽𝑖) is a linear combination of CQ response errors. The conditional 

independence is therefore equivalent to the conditional independence between (�̂�𝑖,𝑂𝐿𝑆 − 𝛽𝑖) and 

𝜽𝑠𝒞
′ 𝒓𝑖𝒞 (since the SWB rating 𝑟𝑖𝑠 is independent of the CQ response errors). To achieve the 

conditional independence, we need 

 

𝐶𝑜𝑣(�̂�𝑖,𝑂𝐿𝑆 − 𝛽𝑖 , 𝜽𝑠𝒞
′ 𝒓𝑖𝒞|𝛽𝑖)

= 𝐶𝑜𝑣(𝛽𝑖𝐳′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞, 𝜽𝑠𝒞
′ (𝛼𝑖𝟏𝐶 + (1 − 𝛽𝑖)𝛾𝟏𝐶 + 𝛽𝑖(𝒘𝒞 + 𝝐𝑖𝒞) + 𝜼𝑖𝒞)|𝛽𝑖)

= 𝐶𝑜𝑣(𝛽𝑖𝐳′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞, 𝜽𝑠𝒞
′ (𝛽𝑖𝝐𝑖𝒞 + 𝜼𝑖𝒞)|𝛽𝑖)

= 𝛽𝑖
2𝐶𝑜𝑣(𝐳′𝝐𝑖𝒞, 𝜽𝑠𝒞

′ 𝝐𝑖𝒞|𝛽𝑖) + 𝐶𝑜𝑣(𝐳′𝜼𝑖𝒞, 𝜽𝑠𝒞
′ 𝜼𝑖𝒞|𝛽𝑖)

= 𝛽𝑖
2𝜎𝜖

2𝜽𝑠𝒞
′ 𝐳 + 𝐸(𝜎𝜂𝑖

2 )𝜽𝑠𝒞
′ 𝐳

= 0.

 

 

Because 𝜎𝜖
2𝜽𝑠𝒞

′ 𝐳 and 𝐸(𝜎𝜂𝑖
2 )𝜽𝑠𝒞

′ 𝐳 do not vary with 𝑖, the only way for the last equality to 

hold for all 𝑖 is to have 

 

𝜽𝑠𝒞
′ 𝐳 = 0, 

 

which is true as 𝜽𝑠𝒞 contains uniform weights (and 𝟏′𝐳 = 0).  

 

D.4.2. For Semi-parametric Estimator of 𝑪𝒐𝒗(𝒙𝒊, 𝒘𝒊𝒔) 

The semi-parametric estimator for 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) assumes a version of equation (D.3): the 

conditional (on 𝛽𝑖) mean independence of �̂�𝑖,𝑂𝐿𝑆 and (𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)𝑥𝑖: 

 

𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸((𝑟𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞)𝑥𝑖|𝛽𝑖). 

 

Since 

 

𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

= 𝐸([𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞) + 𝛽𝑖(𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞) + 𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞]𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

= 𝛽𝑖𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) + 𝛽𝑖𝐸 ((𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) + 𝐸 ((𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) ,
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and 

 

𝐸((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)𝑥𝑖|𝛽𝑖)

= 𝐸([𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞) + 𝛽𝑖(𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞) + 𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞]𝑥𝑖|𝛽𝑖)

= 𝛽𝑖𝐸((𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)𝑥𝑖|𝛽𝑖) + 𝛽𝑖𝐸((𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞)𝑥𝑖|𝛽𝑖) + 𝐸((𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞)𝑥𝑖|𝛽𝑖),

 

 

to satisfy the version of equation (D.3), one set of sufficient conditions is the following: 

 

(1) 𝐸 ((𝜖𝑖𝑠 − 𝜽𝑠𝒞
′ 𝝐𝑖𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸((𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞)𝑥𝑖|𝛽𝑖), 

(2) 𝐸 ((𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸((𝜂𝑖𝑠 − 𝜽𝑠𝒞

′ 𝜼𝑖𝒞)𝑥𝑖|𝛽𝑖), and 

(3) 𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸((𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞)𝑥𝑖|𝛽𝑖). 

 

To see that conditions (1) and (2) are satisfied, note that the independence between the 

mean-zero response errors and (𝑥𝑖 , 𝛽𝑖) implies that the right-hand sides of both equal zero. 

Additionally, the conditional (on 𝛽𝑖) independence between �̂�𝑖,𝑂𝐿𝑆 and 𝜽𝑠𝒞
′ 𝝐𝑖𝒞 implies that the 

left-hand side of (1) equals zero, while the conditional independence between �̂�𝑖,𝑂𝐿𝑆 and 𝜽𝑠𝒞
′ 𝜼𝑖𝒞 

implies that the left-hand side of (2) equals zero. 

To satisfy condition (3), we note that it is equivalent to 

 

𝐸(𝑤𝑖𝑠𝑥𝑖|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸(𝑤𝑖𝑠𝑥𝑖|𝛽𝑖), 

 

which holds because the response errors are independent from (𝑤𝑖𝑠 , 𝑥𝑖). 

 

D.4.3. For Semi-parametric Estimator of 𝑪𝒐𝒗(𝒘𝒊𝒔, 𝒘𝒊𝒔′) 

The semi-parametric estimator for 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) assumes a version of equation (D.3): 

the conditional (on 𝛽𝑖) mean independence of �̂�𝑖,𝑂𝐿𝑆 and (𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞): 

 

𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)|𝛽𝑖). 
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Because 

 

(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)

= [𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞) + 𝛽𝑖(𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞) + (𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞)]

⋅ [𝛽𝑖(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞) + 𝛽𝑖(𝜖𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝝐𝑖𝒞) + (𝜂𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝜼𝑖𝒞)]

= 𝛽𝑖
2(𝑤𝑖𝒞 − 𝜽𝑠𝒞

′ 𝒘𝒞)(𝑤𝑖𝒞′ − 𝜽𝑠′𝒞
′ 𝒘𝒞) + 𝛽𝑖

2(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)(𝜖𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝝐𝑖𝒞)

+𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)(𝜂𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞) + 𝛽𝑖
2(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒘𝒞)(𝜖𝑖𝑠 − 𝜽𝑠𝒞
′ 𝝐𝑖𝒞)

+𝛽𝑖
2(𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞)(𝜖𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝝐𝑖𝒞) + 𝛽𝑖(𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞)(𝜂𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝜼𝑖𝒞)

+𝛽𝑖(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞)(𝜂𝑖𝑠 − 𝜽𝑠𝒞

′ 𝜼𝑖𝒞) + 𝛽𝑖(𝜖𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝝐𝑖𝒞)(𝜂𝑖𝑠 − 𝜽𝑠𝒞

′ 𝜼𝑖𝒞)

+(𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞)(𝜂𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞),

 

 

we have 

 

𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

= 𝛽𝑖
2𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞)(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞)|𝛽𝑖) + 𝛽𝑖

2𝐸(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞|𝛽𝑖)𝐸(−𝜽𝑠′𝒞

′ 𝝐𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

+𝛽𝑖𝐸(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞|𝛽𝑖)𝐸(−𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) + 𝛽𝑖
2𝐸(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒘𝒞|𝛽𝑖)𝐸(−𝜽𝑠𝒞
′ 𝝐𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

+𝛽𝑖
2[1(𝑠 = 𝑠′)𝜎𝜖

2 + 𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝝐𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)] + 𝛽𝑖𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

+𝛽𝑖𝐸(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞|𝛽𝑖)𝐸(−𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) + 𝛽𝑖𝐸(𝜽𝒔′𝓒
′ 𝝐𝑖𝒞𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

+1(𝑠 = 𝑠′)𝐸(𝜎𝜂𝑖
2 ) + 𝐸(𝜽𝑠𝒞

′ 𝜼𝒊𝓒𝜽𝑠′𝒞
′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

= 𝛽𝑖
2𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞)(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞)|𝛽𝑖) + 𝛽𝑖𝐸(𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞|𝛽𝑖)𝐸(−𝛽𝑖𝜽𝑠′𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

+𝛽𝑖𝐸(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞|𝛽𝑖)𝐸(−𝛽𝑖𝜽𝑠𝒞

′ 𝝐𝑖𝒞 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

+𝛽𝑖
2[1(𝑠 = 𝑠′)𝜎𝜖

2 + 𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝝐𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)] + 𝛽𝑖𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆)

+𝛽𝑖𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) + 1(𝑠 = 𝑠′)𝐸(𝜎𝜂𝑖
2 ) + 𝐸(𝜽𝑠𝒞

′ 𝜼𝒊𝓒𝜽𝑠′𝒞
′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆),

 

 

and similarly, 

 

𝐸 ((𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞)(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)|𝛽𝑖)

= 𝛽𝑖
2𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞)(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞)|𝛽𝑖) + 𝛽𝑖𝐸(𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞|𝛽𝑖)𝐸(−𝛽𝑖𝜽𝑠′𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖)

+𝛽𝑖𝐸(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞|𝛽𝑖)𝐸(−𝛽𝑖𝜽𝑠𝒞

′ 𝝐𝑖𝒞 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞|𝛽𝑖) + 𝛽𝑖

2[1(𝑠 = 𝑠′)𝜎𝜖
2 + 𝐸(𝜽𝑠𝒞

′ 𝝐𝑖𝒞𝜽𝑠′𝒞
′ 𝝐𝑖𝒞|𝛽𝑖)]

+𝛽𝑖𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) + 𝛽𝑖𝐸(𝜽𝑠′𝒞
′ 𝝐𝑖𝒞𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) + 1(𝑠 = 𝑠′)𝐸(𝜎𝜂𝑖

2 ) + 𝐸(𝜽𝑠𝒞
′ 𝜼𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖)

= 𝛽𝑖
2𝐸 ((𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞)(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞)|𝛽𝑖) + 𝛽𝑖

2[1(𝑠 = 𝑠′)𝜎𝜖
2 + 𝐸(𝜽𝑠𝒞

′ 𝝐𝑖𝒞𝜽𝑠′𝒞
′ 𝝐𝑖𝒞|𝛽𝑖)]

+1(𝑠 = 𝑠′)𝐸(𝜎𝜂𝑖
2 ) + 𝐸(𝜽𝑠𝒞

′ 𝜼𝑖𝒞𝜽𝑠′𝒞
′ 𝜼𝑖𝒞|𝛽𝑖).
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For the version of equation (D.3) to hold, one set of sufficient conditions is thus 

 

(1) 𝛽𝑖𝐸(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞|𝛽𝑖)𝐸(−𝛽𝑖𝜽𝑠′𝒞

′ 𝝐𝑖𝒞 − 𝜽𝑠′𝒞
′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 0, 

(2) 𝛽𝑖𝐸(𝑤𝑖𝒞′ − 𝜽𝑠′𝒞
′ 𝒘𝒞|𝛽𝑖)𝐸(−𝛽𝑖𝜽𝑠𝒞

′ 𝝐𝑖𝒞 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 0, 

(3) 𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝝐𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝝐𝑖𝒞|𝛽𝑖), 

(4) 𝐸(𝜽𝑠𝒞
′ 𝜼𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸(𝜽𝑠𝒞
′ 𝜼𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖), 

(5) 𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 0, and 

(6) 𝐸(𝜽𝑠′𝒞
′ 𝝐𝑖𝒞𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 0. 

 

We now show that uniform benchmarking satisfies all the six conditions for all 𝑖. Since 

 

𝐶𝑜𝑣(𝛽𝑖𝐳′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞, −𝛽𝑖𝜽𝑠′𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖)

= −𝛽𝑖
2𝐶𝑜𝑣(𝐳′𝝐𝑖𝒞, 𝜽𝑠′𝒞

′ 𝝐𝑖𝒞) − 𝐶𝑜𝑣(𝐳′𝜼𝑖𝒞, 𝜽𝑠′𝒞
′ 𝜼𝑖𝒞)

= −𝛽𝑖
2𝜎𝜖

2𝜽𝑠′𝒞
′ 𝐳 − 𝐸(𝜎𝜂𝑖

2 )𝜽𝑠′𝒞
′ 𝐳

= 0

 

 

under uniform benchmarking, it follows that 

 

𝐸(−𝛽𝑖𝜽𝑠′𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸(−𝛽𝑖𝜽𝑠′𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) = 0, 

 

which implies that condition (1) is satisfied. Similarly, 

 

𝐶𝑜𝑣(𝛽𝑖𝐳′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞 , −𝛽𝑖𝜽𝑠𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖)

= −𝛽𝑖
2𝐶𝑜𝑣(𝐳′𝝐𝑖𝒞, 𝜽𝑠𝒞

′ 𝝐𝑖𝒞) − 𝐶𝑜𝑣(𝐳′𝜼𝑖𝒞, 𝜽𝑠𝒞
′ 𝜼𝑖𝒞)

= −𝛽𝑖
2𝜎𝜖

2𝜽𝑠𝒞
′ 𝐳 − 𝐸(𝜎𝜂𝑖

2 )𝜽𝑠𝒞
′ 𝐳

= 0

 

 

guarantees 

 

𝐸(−𝛽𝑖𝜽𝑠𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖,𝑂𝐿𝑆) = 𝐸(−𝛽𝑖𝜽𝑠𝒞
′ 𝝐𝑖𝒞 − 𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) = 0, 
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implying the satisfaction of condition (2). 

Since (𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞) and 𝜽𝑠𝒞

′ 𝝐𝑖𝒞 are jointly normal when conditional on 𝛽𝑖 and 

 

𝐶𝑜𝑣(𝛽𝑖𝐳′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞 , 𝜽𝑠𝒞
′ 𝝐𝑖𝒞|𝛽𝑖) = 𝛽𝑖𝜎𝜖

2𝜽𝑠𝒞
′ 𝐳 = 0 

 

under uniform benchmarking, (𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞) and 𝜽𝑠𝒞

′ 𝝐𝑖𝒞 are conditionally independent. Since 

𝜽𝑠𝒞 = 𝜽𝑠′𝒞, (𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞) and 𝜽𝑠𝒞

′ 𝝐𝑖𝒞𝜽𝑠′𝒞
′ 𝝐𝑖𝒞 are conditionally independent, leading to the 

satisfaction of condition (3). In exactly the same way, one can show that condition (4) is satisfied 

under uniform benchmarking. 

Because, conditional on 𝛽𝑖, (𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞), 𝜽𝑠𝒞

′ 𝝐𝑖𝒞, and 𝜽𝑠′𝒞
′ 𝜼𝑖𝒞 are multivariate 

normal, the above zero covariance between (𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞) and 𝜽𝑠𝒞

′ 𝝐𝑖𝒞 and a similar zero 

covariance between (𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞) and 𝜽𝑠′𝒞

′ 𝜼𝑖𝒞, together with the independence between the 

two types of response errors, imply that (𝛽𝑖𝐳
′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞), 𝜽𝑠𝒞

′ 𝝐𝑖𝒞, and 𝜽𝑠′𝒞
′ 𝜼𝑖𝒞  are mutually 

independent conditional on 𝛽𝑖. The conditional mutual independence implies 

 

𝐶𝑜𝑣(𝛽𝑖𝐳′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞, 𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) = 0 

 

and 

 

𝐶𝑜𝑣(𝛽𝑖𝐳′𝝐𝑖𝒞 + 𝐳′𝜼𝑖𝒞, 𝜽𝑠′𝒞
′ 𝝐𝑖𝒞𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) = 0. 

 

It thus follows 

 

𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖) = 𝐸(𝜽𝑠𝒞
′ 𝝐𝑖𝒞𝜽𝑠′𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) = 0 

 

and 

 

𝐸(𝜽𝑠′𝒞
′ 𝝐𝑖𝒞𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖 , �̂�𝑖) = 𝐸(𝜽𝑠′𝒞
′ 𝝐𝑖𝒞𝜽𝑠𝒞

′ 𝜼𝑖𝒞|𝛽𝑖) = 0. 
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In words, conditions (5) and (6) are satisfied. 

 

E. Method-of-Moments Estimators 

This appendix contains the derivation of all of our method-of-moments estimators. With 

the help of additional assumptions, these estimators have analytic expressions and are thus 

computationally lighter compared to our semi-parametric and comprehensive MLE estimators. 

As highlighted in the paper, we only recommend the method-of-moments estimator for 

𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠); in all other cases, the method-of-moments estimator requires assuming that the 

stretcher 𝛽𝑖 and the common-scale SWB 𝑤𝑖𝑠 are independent, and as Appendix C shows, the 

estimator will be biased if instead they are correlated. 

 

E.1. Method-of-Moments Estimator for 𝑬(𝒘𝒊𝒔) 

The key assumption is independence between 𝛽𝑖 and 𝑤𝑖𝑠, which gives us 

 

𝐸(𝑟𝑖𝑠) = 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠) + 𝐸(𝑤𝑖𝑠) = 𝐸(𝑤𝑖𝑠). 

 

The estimator is thus 

 

1

𝐼
∑𝑟𝑖𝑠

𝐼

𝑖=1

. 

 

E.2. Method-of-Moments Estimator for 𝑪𝒐𝒗(𝒙𝒊,𝒘𝒊𝒔) 

To estimate 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠), the key assumption is zero co-skewness between the stretcher, 

the common-scale SWB, and the demographic 𝑥𝑖: 

 

𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))] = 0. 

 

Since the MMB �̂�𝑖(ℎ) is the variance-minimizing weighted average of CQ responses, 

𝜽𝑠𝒞
′ 𝒓𝑖𝒞, that has mean ℎ (see Section E.2.1 below), 
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𝐶𝑜𝑣(𝑥𝑖 , 𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞) = 𝐸[(𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞 + 𝜖𝑖𝑠 − 𝜽𝑠𝒞
′ 𝝐𝑖𝒞) + 𝜂𝑖𝑠 − 𝜽𝑠𝒞

′ 𝜼𝑖𝒞)(𝑥𝑖 − 𝐸(𝑥𝑖))]

= 𝐸[𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞)(𝑥𝑖 − 𝐸(𝑥𝑖))]

= 𝐸[𝛽𝑖(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))] + [𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞
′ 𝒘𝒞]𝐸[𝛽𝑖(𝑥𝑖 − 𝐸(𝑥𝑖))]

= 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) + 𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))]

+[𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞
′ 𝒘𝒞]𝐸[𝛽𝑖(𝑥𝑖 − 𝐸(𝑥𝑖))]

= 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠),

 

 

where the last equality holds because of the zero-co-skewness assumption and mean-matched 

benchmarking (ℎ = 𝐸(𝑤𝑖𝑠)). 

Thus, the estimator is 

 

1

𝐼
∑(𝑟𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞 −
1

𝐼
∑(𝑟𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞)

𝐼

𝑖=1

)

𝐼

𝑖=1

(𝑥𝑖 −
1

𝐼
∑𝑥𝑖

𝐼

𝑖=1

). 

 

E.2.1. Mean-Matched Benchmark (MMB) As Mean-Matched Minimum Variance 

Weighted Average of CQ Ratings 

To see that MMB is the mean-matched variance-minimizing weighted average of CQ 

ratings, we first derive its explicit expression as a weighted average of CQ ratings. Then we 

show that the weights minimize the variance of the benchmarked ratings while matching the 

mean ℎ. 

Appendix D.1 shows that 

 

�̂�𝑖,𝑂𝐿𝑆 = 𝐳′𝒓𝑖𝒞

=
𝐶�̂�𝒞

′ − �̂�𝒞
′ 𝟏𝐶𝟏𝐶

′

𝐶�̂�𝒞
′ �̂�𝒞 − �̂�𝒞

′ 𝟏𝐶𝟏𝐶
′ �̂�𝒞

𝒓𝑖𝒞

 

 

and 

 

�̂�𝑖,𝑂𝐿𝑆 =
1

𝐶
𝟏𝐶

′ (𝒓𝑖𝒞 − �̂�𝑖,𝑂𝐿𝑆�̂�𝒞). 

 

This implies that 
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�̂�𝑖(ℎ) ≡ �̂�𝑖,𝑂𝐿𝑆 + �̂�𝑖,𝑂𝐿𝑆ℎ

=
1

𝐶
𝟏𝐶

′ 𝒓𝑖𝒞 + (ℎ −
1

𝐶
𝟏𝐶

′ �̂�𝒞) �̂�𝑖,𝑂𝐿𝑆

= [
1

𝐶
𝟏𝐶

′ + (ℎ −
1

𝐶
𝟏𝐶

′ �̂�𝒞)
𝐶�̂�𝒞

′ − �̂�𝒞
′ 𝟏𝐶𝟏𝐶

′

𝐶�̂�𝒞
′ �̂�𝒞 − �̂�𝒞

′ 𝟏𝐶𝟏𝐶
′ �̂�𝒞

] 𝒓𝑖𝒞

= [
�̂�𝒞

′ �̂�𝒞 − ℎ�̂�𝒞
′ 𝟏𝐶

𝐶�̂�𝒞
′ �̂�𝒞 − �̂�𝒞

′ 𝟏𝐶𝟏𝐶
′ �̂�𝒞

𝟏𝐶
′ +

𝐶ℎ − 𝟏𝐶
′ �̂�𝒞

𝐶�̂�𝒞
′ �̂�𝒞 − �̂�𝒞

′ 𝟏𝐶𝟏𝐶
′ �̂�𝒞

�̂�𝒞
′ ] 𝒓𝑖𝒞,

 

 

which shows that the MMB is a weighted average of 𝒓𝑖𝒞. 

To see that the weights are variance-minimizing and mean-matching, consider the 

following problem that minimizes the variance of the benchmarked SWB rating: 

 

min
𝜽𝑠𝒞

𝑉𝑎𝑟(𝑟𝑖s − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞) 

s. t.  𝜽𝑠𝒞
′ 𝟏𝑪 = 1  and  𝜽𝑠𝒞

′ �̂�𝒞 = ℎ. 

 

(In Appendix D.2, only the first constraint was present, and the objective function was 

only the noise component of the variance. In that case, uniform benchmarking was optimal.) Due 

to the second constraint, the weighting vector 𝜽𝑠𝒞 varies across SWB questions, since the target 

mean ℎ varies across the SWB questions. 

The Lagrangian for the constrained minimization problem is 

 

𝛬 =
1

2
(𝜎𝜖

2𝐸(𝛽𝑖
2) + 𝐸(𝜎𝜂𝑖

2 ))𝜽𝑠𝒞
′ 𝜽𝑠𝒞 + 𝜆(1 − 𝜽𝑠𝒞

′ 𝟏𝐶) + 𝜅(ℎ − 𝜽𝑠𝒞
′ �̂�𝒞), 

 

where 𝜆 and 𝜅 are Lagrange multipliers. Matrix calculus leads to the first-order condition: 

 

(𝜎𝜖
2𝐸(𝛽𝑖

2) + 𝐸(𝜎𝜂𝑖
2 ))𝜽𝑠𝒞 − 𝜆𝟏𝐶 − 𝜅�̂�𝒞 = 𝟎𝐶 . 

 

Solving for 𝜽𝑠𝒞 gives 
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𝜽𝑠𝒞
∗ = (𝜎𝜖

2𝐸(𝛽𝑖
2) + 𝐸(𝜎𝜂𝑖

2 ))
−1

(𝜆𝟏𝐶 + 𝜅�̂�𝒞). 

 

Inserting 𝜽𝑠𝒞
∗  into the two constraints yields a system of two simultaneous equations in 

the Lagrange multipliers 𝜆 and 𝜅, 

 

(𝜎𝜖
2𝐸(𝛽𝑖

2) + 𝐸(𝜎𝜂𝑖
2 ))

−1
[
(𝜆𝟏𝐶

′ + 𝜅�̂�𝒞
′ )𝟏𝐶

(𝜆𝟏𝐶
′ + 𝜅�̂�𝒞

′ )�̂�𝒞
] = [

1
ℎ
], 

 

which can be simplified to 

 

[
𝜆
𝜅
] =

𝜎𝜖
2𝐸(𝛽𝑖

2) + 𝐸(𝜎𝜂𝑖
2 )

𝐶�̂�𝒞
′ �̂�𝒞 − �̂�𝒞

′ 𝟏𝐶𝟏𝐶
′ �̂�𝒞

[
�̂�𝒞

′ �̂�𝒞 − ℎ�̂�𝒞
′ 𝟏𝐶

𝐶ℎ − 𝟏𝐶
′ �̂�𝒞

]. 

 

Substituting the expressions for the Lagrange multipliers into the first-order condition 

gives the optimal weights: 

 

𝜽𝑠𝒞
∗ =

�̂�𝒞
′ �̂�𝒞 − ℎ�̂�𝒞

′ 𝟏𝐶

𝐶�̂�𝒞
′ �̂�𝒞 − �̂�𝒞

′ 𝟏𝐶𝟏𝐶
′ �̂�𝒞

𝟏𝐶 +
𝐶ℎ − 𝟏𝐶

′ �̂�𝒞

𝐶�̂�𝒞
′ �̂�𝒞 − �̂�𝒞

′ 𝟏𝐶𝟏𝐶
′ �̂�𝒞

�̂�𝒞, 

 

which are exactly the MMB’s weights. 

 

E.3. Method-of-Moments Estimator for 𝑪𝒐𝒗(𝒘𝒊𝒔, 𝒘𝒊𝒔′) 

Because 𝑉𝑎𝑟(𝑤𝑖𝑠) is a special case of 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) where 𝑠′ = 𝑠, we only show the 

method-of-moments estimator for 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′). The key assumption is independence between 

𝛽𝑖 and 𝑤𝑖𝑠. 

Note that 
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𝐶𝑜𝑣(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞, 𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)

= 𝐶𝑜𝑣(𝛽𝑖(𝑤𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒘𝒞 + 𝜖𝑖𝑠 − 𝜽𝑠𝒞

′ 𝝐𝑖𝒞) + 𝜂𝑖𝑠 − 𝜽𝑠𝒞
′ 𝜼𝑖𝒞,

𝛽𝑖(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞 + 𝜖𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝝐𝑖𝒞) + 𝜂𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝜼𝑖𝒞)

= 𝐸[𝛽𝑖
2𝐶𝑜𝑣(𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞, 𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞|𝛽𝑖)] + 𝐶𝑜𝑣 (𝛽𝑖𝐸(𝑤𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒘𝒞|𝛽𝑖), 𝛽𝑖𝐸(𝑤𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒘𝒞|𝛽𝑖))

+𝐸(𝛽𝑖
2)[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞

′ 𝜽𝑠′𝒞]𝜎𝜖
2 + [1(𝑠 = 𝑠′) + 𝜽𝑠𝒞

′ 𝜽𝑠′𝒞]𝐸(𝜎𝜂𝑖
2 )

= 𝐸(𝛽𝑖
2)𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′) + [𝐸(𝑤𝑖𝑠) − 𝜽𝑠𝒞

′ 𝒘𝒞][𝐸(𝑤𝑖𝑠′) − 𝜽𝑠′𝒞
′ 𝒘𝒞][𝐸(𝛽𝑖

2) − 1]

+[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞][𝐸(𝛽𝑖

2)𝜎𝜖
2 + 𝐸(𝜎𝜂𝑖

2 )],

 

 

where the last equality follows from the independence between 𝛽𝑖 and 𝑤𝑖𝑠.  

With 𝜽𝑠𝒞
′ 𝒘𝒞 matching 𝐸(𝑤𝑖𝑗) or 𝜽𝑠′𝒞

′ 𝒘𝒞 matching 𝐸(𝑤𝑖𝑠′), we have 

 

𝐶𝑜𝑣(𝑤𝑖𝑠, 𝑤𝑖𝑠′) =
1

𝐸(𝛽𝑖
2)

𝐶𝑜𝑣(𝑟𝑖𝑠 − 𝜽𝑠𝒞
′ 𝒓𝑖𝒞, 𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)

−[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞] [𝜎𝜖

2 +
𝐸(𝜎𝜂𝑖

2 )

𝐸(𝛽𝑖
2)

] .

 

 

It then follows that the estimator is 

 

1

�̂�(𝛽𝑖
2)

1

𝐼
∑ (𝑟𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞 −
1

𝐼
∑(𝑟𝑖𝑠 − 𝜽𝑠𝒞

′ 𝒓𝑖𝒞)

𝐼

𝑖=1

)

𝐼

𝑖=1

(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞
′ 𝒓𝑖𝒞 −

1

𝐼
∑(𝑟𝑖𝑠′ − 𝜽𝑠′𝒞

′ 𝒓𝑖𝒞)

𝐼

𝑖=1

)

−[1(𝑠 = 𝑠′) + 𝜽𝑠𝒞
′ 𝜽𝑠′𝒞] [�̂�𝜖

2 +
�̂�(𝜎𝜂𝑖

2 )

�̂�(𝛽𝑖
2)

] ,

 

 

where the CQ-only MLE provides the estimates �̂�(𝛽𝑖
2), �̂�𝜖

2, and �̂�(𝜎𝜂𝑖
2 ). 

 

F. Maximum-Likelihood Estimators 

This appendix provides additional information on the MLEs discussed in the paper. 

 

F.1. CQ-Only MLE 

This subsection details the likelihood function and implementation for the MLE that 

estimates the scale-use hyperparameters using CQ ratings. Given the distributional assumptions 
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in Section IV and the translation function (equation 4), the sub-likelihood function for 

respondent 𝑖’s CQ ratings (𝒓𝑖𝒞) is 

 

𝑙𝑖(𝒓𝑖𝒞 ∣ 𝛼𝑖 , 𝛽𝑖 , 𝛾,𝒘𝒞 , 𝜎𝜖 , 𝜎𝜂𝑖
)

= (𝛽𝑖
2𝜎𝜖

2 + 𝜎𝜂𝑖
2 )

−
𝐶
2𝜙 ((𝛽𝑖

2𝜎𝜖
2 + 𝜎𝜂𝑖

2 )
−

1
2[𝒓𝑖𝒞 − (𝛼𝑖 + 𝛾)𝟏𝐶 − 𝛽𝑖(𝒘𝒞 − 𝛾𝟏𝐶)]) .

 

 

where 𝟏𝐶 denotes the 𝐶-dimensional vector full of ones, 𝒘𝒞 ≡ [𝑤1, … , 𝑤𝐶]′, and 𝜙 the 

multivariate standard-normal probability density function. 

Assuming independence across respondents, the log-likelihood function for CQ ratings 

from all respondents (𝒓⋅𝒞) is thus 

 

ln ℒ (𝒓⋅𝒞|𝜎𝛼 , 𝜎𝛽, 𝛾, 𝒘𝒞, 𝜎𝜖 , 𝜇ln𝜎𝜂
, 𝜎ln𝜎𝜂

)

= ∑ln

𝐼

𝑖=1

∭ 𝑙𝑖(𝒓𝑖𝐶 ∣ 𝛼𝑖 , 𝛽𝑖 , 𝛾, 𝒘𝒞, 𝜎𝜖 , 𝜎𝜂𝑖
)𝑓(𝛼𝑖)𝑓(𝛽𝑖)𝑓(𝜎𝜂𝑖

)𝑑𝛼𝑖𝑑𝛽𝑖𝑑𝜎𝜂𝑖
,
 

 

where 𝑓 denotes a probability density function. 

The three-dimensional integration renders the MLE too slow to be practically useful. To 

deal with this computational issue, we use hierarchical modeling, in which the log-likelihood 

function is written 

 

ln ℒ(𝒓⋅𝒞|{𝛼𝑖}, {𝛽𝑖}, 𝛾,𝒘𝒞 , 𝜎𝜖 , {𝜎𝜂𝑖
})

= ∑ln

𝐼

𝑖=1

𝑙𝑖(𝒓𝑖𝒞 ∣ 𝛼𝑖 , 𝛽𝑖 , 𝛾,𝒘𝒞 , 𝜎𝜖 , 𝜎𝜂𝑖
),

 

 

and 𝛼𝑖, 𝛽𝑖, and 𝜎𝜂𝑖
 are drawn from 𝒩(0,𝜎𝛼

2), 𝒩(1,𝜎𝛽), and ln 𝒩 (𝜇ln𝜎𝜂
, 𝜎ln𝜎𝜂

2 ) independently. 

Because 𝛼𝑖, 𝛽𝑖, and 𝜎𝜂𝑖
 are at the individual level while 𝒓𝑖𝒞 is at the individual-CQ level, the 

model can be viewed as a hierarchical model. The hierarchical modeling approach thus should 

give consistent and efficient estimates of the parameters of interest. Le Cam (1953) shows that 

such Bayesian point estimators are consistent and efficient estimators in the frequentist sense. 
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The MLE takes as an input 𝒘𝒞 that is estimated by 1/𝐼 ∑ 𝒓𝑖𝒞
𝐼
𝑖=1 , which simulations 

suggest to be a very good approximation with a few hundred respondents. We use Stan’s no-U-

turn implementation of Hamiltonian Monte Carlo to sample from the hierarchical model. We 

specify 4 chains, each with 1,000 draws of warm-up and 1,000 draws of sampling, resulting in a 

total of 4,000 draws for each parameter of interest. We report the posterior modes for the 

hyperparameters of interest, exploiting the equivalence between maximizing the likelihood 

function and estimating the posterior mode under uniform priors. We bootstrap standard errors 

through 100 repetitions of sampling with replacement. 

 

F.2. Comprehensive MLE 

This subsection details the likelihood function for the comprehensive MLE estimator in 

Section V.C, which uses both SWB and CQ ratings. 

The sub-likelihood function for respondent 𝑖’s SWB ratings is 

 

𝑙𝑖𝒮(𝒓𝑖𝒮|𝒶𝑖 , 𝛽𝑖 , 𝒘𝑖𝒮 , 𝜎𝜖 , 𝜎𝜂𝑖
)

= (𝛽𝑖
2𝜎𝜖

2 + 𝜎𝜂𝑖
2 )

−
𝑆
2𝜙((𝛽𝑖

2𝜎𝜖
2 + 𝜎𝜂𝑖

2 )
−

1
2(𝒓𝑖𝒮 − 𝒶𝑖𝟏𝑆 − 𝛽𝑖𝒘𝑖𝒮)) ,

 

 

where 𝒮 is the set of 𝑆 SWB questions, 𝟏𝑆 denotes the 𝑆-dimensional vector full of ones, and 

𝒘𝑖𝒮 ≡ [𝑤𝑖1, … , 𝑤𝑖𝑆]
′. 

Similarly, the sub-likelihood function for the same respondent’s CQ ratings is 

 

𝑙𝑖𝒞(𝒓𝑖𝒞|𝒶𝑖 , 𝛽𝑖 , 𝒘𝒞, 𝜎𝜖 , 𝜎𝜂𝑖
)

= (𝛽𝑖
2𝜎𝜖

2 + 𝜎𝜂𝑖
2 )

−
𝐶
2𝜙 ((𝛽𝑖

2𝜎𝜖
2 + 𝜎𝜂𝑖

2 )
−

1
2(𝒓𝑖𝒞 − 𝒶𝑖𝟏𝐶 − 𝛽𝑖𝒘𝒞)) .

 

 

The joint distribution of (𝒶𝑖 , 𝛽𝑖 , 𝒘𝑖𝒮′) in equation (15), 
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[
 
 
 
 
𝒶𝑖

𝛽𝑖

𝑤𝑖1

⋮
𝑤𝑖𝑆]

 
 
 
 

∼ 𝒩

(

 
 
 

[
 
 
 
 

0
1

𝒙𝑖
′𝒃1

⋮
𝒙𝑖

′𝒃𝑆]
 
 
 
 

,

[
 
 
 
 
 

𝜎𝒶
2 𝜎𝒶,𝛽 𝜎𝒶,𝑤1

⋯ 𝜎𝒶,𝑤𝑆

𝜎𝒶,𝛽 𝜎𝛽
2 𝜎𝛽,𝑤1

⋯ 𝜎𝛽,𝑤𝑆

𝜎𝒶,𝑤1
𝜎𝛽,𝑤1

𝜎𝑤1

2 ⋯ 𝜎𝑤1,𝑤𝑆

⋮ ⋮ ⋮ ⋱ ⋮
𝜎𝒶,𝑤𝑆

𝜎𝛽,𝑤𝑆
𝜎𝑤1,𝑤𝑆

⋯ 𝜎𝑤𝑆
2

]
 
 
 
 
 

)

 
 
 

≡ 𝒩(𝝁𝓪,𝜷,𝐰𝓢
, 𝜴𝓪,𝜷,𝐰𝓢

),

 

 

implies their density: 

 

𝑓(𝒶𝑖 , 𝛽𝑖 , 𝒘𝑖𝒮) = |𝜴𝓪,𝜷,𝐰𝓢
|
−

1
2𝜙(𝜴

𝓪,𝜷,𝐰𝓢

−
1
2 ([𝒶i, 𝛽𝑖 , 𝒘𝑖𝒮

′ ]′ − 𝝁𝓪,𝜷,𝐰𝓢
)). 

 

Under independence across respondents, the log-likelihood function for both types of 

ratings from all respondents (𝒓⋅𝒮 , 𝒓⋅𝒞) is thus 

 

ln ℒ (𝒓⋅𝒮 , 𝒓⋅𝒞|𝝁𝒂,𝜷,𝐰𝓢
, 𝜴𝒂,𝜷,𝐰𝓢

, 𝒘𝒞, 𝜎𝜖 , 𝜇ln𝜎𝜂
, 𝜎ln𝜎𝜂

)

= ∑ln

𝐼

𝑖=1

∫ ⋯ ∫ 𝑙𝑖𝒮(𝒓𝑖𝒮|𝒶𝑖 , 𝛽𝑖 , 𝒘𝑖𝒮 , 𝜎𝜖 , 𝜎𝜂𝑖
)𝑙𝑖𝒞(𝒓𝑖𝒞|𝒶𝑖 , 𝛽𝑖 , 𝒘𝒞 , 𝜎𝜖 , 𝜎𝜂𝑖

)𝑓(𝒶𝑖 , 𝛽𝑖 , 𝒘𝑖𝒮)𝑓(𝜎𝜂𝑖
)𝑑𝒶𝑖𝑑𝛽𝑖𝑑𝒘𝑖𝒮𝑑𝜎𝜂𝑖

.
 

 

The high (𝑆 + 3)-dimensional integration renders direct estimation of this MLE 

infeasible. To deal with this, we again use hierarchical modeling where the log-likelihood 

function becomes 

 

ln ℒ(𝒓⋅𝒮, 𝒓⋅𝒞|{𝒶𝑖}, {𝛽𝑖},𝒘⋅𝒮 , 𝒘𝒞, 𝜎𝜖 , {𝜎𝜂𝑖
})

= ∑[ln 𝑙𝑖𝒮(𝒓𝑖𝒮|𝒶𝑖 , 𝛽𝑖 , 𝒘𝑖𝒮 , 𝜎𝜖 , 𝜎𝜂𝑖
) + ln 𝑙𝑖𝒞(𝒓𝑖𝒞|𝒶𝑖 , 𝛽𝑖 , 𝒘𝒞 , 𝜎𝜖 , 𝜎𝜂𝑖

)]

𝐼

𝑖=1

,
 

 

and (𝒶i, 𝛽𝑖 , 𝒘𝑖𝒮′) and 𝜎𝜂𝑖
 will be drawn from 𝒩(𝝁𝓪,𝜷,𝐰𝓢

, 𝜴𝓪,𝜷,𝐰𝓢
) and ln 𝒩 (𝜇ln𝜎𝜂

, 𝜎ln𝜎𝜂

2 ), 

respectively. 
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The comprehensive MLE is computationally the most intensive among our estimators. To 

improve its stability, we fix the two hyperparameters corresponding to the standard deviations of 

the gross shifter and stretcher (𝜎𝒶 and 𝜎𝛽) to their estimates from the CQ-only MLE. 

 

F.3. Allowing for Top- and Bottom-Coding 

About 5.0% of the SWB responses in our Baseline data are exactly 100, and roughly 

0.9% are exactly 0. Our main analyses treated these boundary responses as truly equal to 100 and 

0. In this subsection, we instead accommodate the possibility that these responses might have 

been even more extreme if the scale were not constrained to the 0-100 interval. 

To accommodate top-coding and bottom-coding, we extend our comprehensive MLE 

with a straightforward Tobit-style adjustment, making the estimator’s computation even heavier. 

The estimator treats a boundary response as the truncated value of a true, unobserved latent 

response. Tables F.1-3 report that the estimates of the hyperparameters, 𝐸(𝑤𝑖𝑠), and 

demographic regression are basically unchanged by accommodating top- and bottom-coding. 

Only the estimates of 𝑉𝑎𝑟(𝑤𝑖𝑠) are noticeably affected—the estimates and their standard errors 

increased, which is consistent with adjustments for top- and bottom-coding—however, the 

magnitude of these differences remains relatively minor. 

 

Table F.1. MLE Estimates of Hyperparameters with and without Top- and Bottom-Coding 

Adjustment 

Hyperparameter Without adjustment With adjustment 

𝜎𝛼 7.69 

(0.12) 

7.82 

(0.14) 

𝛾 60.22 

(1.16) 

60.27 

(1.08) 

𝜎𝛽 0.29 

(0.01) 

0.29 

(0.01) 

𝜎𝜖 6.38 

(0.32) 

7.38 

(0.27) 

𝜇ln𝜎𝜂
 2.52 

(0.02) 

2.50 

(0.02) 

𝜎ln𝜎𝜂
 0.34 

(0.01) 

0.39 

(0.01) 
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Notes: Sample includes 3,358 Baseline respondents who passed QC. 

Standard errors in parentheses. Estimates from the comprehensive 

MLE estimator. 
 

Table F.2. Estimates of 𝑬(𝒘𝒊𝒔) with and without Top- and Bottom-Coding Adjustment 

SWB Without adjustment With adjustment 

Life Satisfaction 67.69 (0.40) 68.16 (0.43) 

Happiness 68.16 (0.39) 68.58 (0.39) 

Worthwhileness 69.99 (0.40) 70.46 (0.41) 

No Anxiety 55.27 (0.53) 55.34 (0.53) 

Notes: Sample includes 3,358 Baseline respondents who passed QC. 

Standard errors in parentheses. Scale-use correction through the 

comprehensive MLE estimator with and without adjustment for top- and 

bottom-coding. 

 

Table F.3. Life Satisfaction and “No Anxiety” Regressions with and without Top- and 

Bottom-Coding Adjustment 

 Life Satisfaction No Anxiety 

Demographics Without adjustment With adjustment Without adjustment With adjustment 

Demeaned age/10 1.6††† 

(0.4) 

1.5††† 

(0.4) 

3.9††† 

(0.4) 

4.2††† 

(0.5) 

(Demeaned 

age)2/100 

1.6††† 

(0.2) 

1.7††† 

(0.2) 

0.9††† 

(0.3) 

1.0††† 

(0.3) 

Log(HH income) 5.3††† 

(0.6) 

5.3††† 

(0.6) 

2.7††† 

(0.8) 

3.0††† 

(0.9) 

Unemployed -7.0††† 

(1.3) 

-8.0††† 

(1.3) 

-5.6††† 

(1.8) 

-6.1††† 

(1.7) 

Employed part-time -2.3 

(1.2) 

-3.0†† 

(1.3) 

-4.6††† 

(1.5) 

-5.3††† 

(1.5) 

Out of labor 

force/other 

-4.5††† 

(1.3) 

-5.4††† 

(1.3) 

-4.3†† 

(1.7) 

-4.2†† 

(1.7) 

Married, not 

separated 

8.6††† 

(1.0) 

8.7††† 

(1.0) 

3.1†† 

(1.3) 

2.9† 

(1.3) 

Ever divorced 2.1 

(1.2) 

2.4 

(1.3) 

0.5 

(1.7) 

-0.3 

(1.7) 

Have ≥1 child 3.8††† 

(0.9) 

4.2††† 

(1.0) 

1.7 

(1.2) 

1.5 

(1.3) 

Log(HH size) -2.4†† 

(1.0) 

-2.6†† 

(1.0) 

-2.2 

(1.1) 

-2.3 

(1.2) 

College grad 1.5 
(0.9) 

1.7 
(0.9) 

2.3† 
(1.0) 

2.5† 
(1.1) 

Male 0.1 

(0.9) 

-0.1 

(0.9) 

5.7††† 

(1.0) 

5.9††† 

(1.1) 
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 Life Satisfaction No Anxiety 

Religious attendance 

(0 to 5, "Never" to 

"More than once a 

week") 

1.5††† 

(0.2) 

1.6††† 

(0.2) 

1.0††† 

(0.3) 

1.0††† 

(0.3) 

Asian 0.4 

(1.8) 

0.6 

(1.9) 

3.2 

(1.9) 

3.2 

(1.9) 

Obs. 3,358 3,358 3,358 3,358 

Notes: Sample includes Baseline respondents who passed QC. Standard errors in parentheses. Scale-use adjustment 

through the MOM estimator. Daggers signal false-discovery-rate (FDR) significance levels using the Benjamini-

Hochberg procedure applied to the 29 p-values in each column separately (variables included in FDR correction also 

include additional race and employment status indicators, as well as indicators for region, day of week, political 

party, obesity, and population density; “Other” categories in race and employment status are excluded—we do not 

pose or report hypothesis tests for them); †††, ††, and † indicate significance at the 1-percent, 5-percent, and 10-percent 

levels, respectively. Scale-use correction through the comprehensive MLE estimator with and without adjustment 

for top- and bottom-coding. 

 

Table F.4. Estimates of 𝑽𝒂𝒓(𝒘𝒊𝒔) with and without Top- and Bottom-Coding Adjustment 

SWB Without adjustment With adjustment 

Life Satisfaction 274.0 (10.9) 300.1 (12.7) 

Happiness 264.1 (9.4) 284.2 (10.9) 

Worthwhileness 220.8 (9.7) 242.2 (11.1) 

No Anxiety 369.1 (12.4) 408.0 (14.4) 

Notes: Sample includes 3,358 Baseline respondents who passed 

QC. Standard errors in parentheses. Scale-use correction through 

the comprehensive MLE estimator with and without adjustment for 

top- and bottom-coding. 

 

F.4. Two-Wave CQ-Only MLE 

To gauge the persistence of scale-use parameters (and response errors), we extend the 

CQ-only MLE in Section F.1 above to accommodate CQ responses from two waves of surveys. 

We start by introducing time (𝑡) to equation (4): 

 

𝑟𝑖𝑐,𝑡 = 𝛼𝑖,𝑡 + (1 − 𝛽𝑖,𝑡)𝛾 + 𝛽𝑖,𝑡(𝑤𝑐,𝑡 + 𝜖𝑖𝑐,𝑡) + 𝜂𝑖𝑐,𝑡 , 

 

and extend equations (5) and (6) to 
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𝜶𝑖 ≡ [
𝛼𝑖,1

𝛼𝑖,2
] ∼ 𝒩 ([

0
0
] , [

𝜎𝛼
2 𝑓𝑃𝑉(𝛼)𝜎𝛼

2

𝑓𝑃𝑉(𝛼)𝜎𝛼
2 𝜎𝛼

2 ]) 

𝜷𝑖 ≡ [
𝛽𝑖,1

𝛽𝑖,2
] ∼ 𝒩 ([

1
1
] , [

𝜎𝛽
2 𝑓𝑃𝑉(𝛽)𝜎𝛽

2

𝑓𝑃𝑉(𝛽)𝜎𝛽
2 𝜎𝛽

2 ]) 

[
𝜖𝑖𝑐,1

𝜖𝑖𝑐,2
] ∼ 𝒩 ([

0
0
] , [

𝜎𝜖
2 𝑓𝑃𝑉(𝜖)𝜎𝜖

2

𝑓𝑃𝑉(𝜖)𝜎𝜖
2 𝜎𝜖

2 ]) 

[
𝜂𝑖𝑐,1

𝜂𝑖𝑐,2
] ∼ 𝒩 ([

0
0
] , [

𝜎𝜂𝑖
2 𝑓𝑃𝑉(𝜂)𝜎𝜂𝑖

2

𝑓𝑃𝑉(𝜂)𝜎𝜂𝑖
2 𝜎𝜂𝑖

2 ]), 

 

where 𝑓𝑃𝑉(𝛼), 𝑓𝑃𝑉(𝛽), 𝑓𝑃𝑉(𝜖), and 𝑓𝑃𝑉(𝜂) denote the fractions of the variances of the shifter, 

stretcher, and two response errors that are persistent across waves, respectively. We allow 𝑤𝑐  to 

vary across waves so that the normalizations of 𝐸(𝛼𝑖,𝑡) = 0 and 𝐸(𝛽𝑖,𝑡) = 1 hold in both waves. 

We do not allow 𝛾 to vary across waves so that the gross shifter’s variance and its correlation 

with 𝛽𝑖,𝑡 do not vary across time, just as the stretcher’s and error terms’ variances and their 

correlations do not vary across time.11 

These imply 

 

[
𝑟𝑖𝑐,1
𝑟𝑖𝑐,2

] ∼ 𝒩 ([
𝛼𝑖,1 + (1 − 𝛽𝑖,1)𝛾 + 𝛽𝑖,1𝑤𝑐,1

𝛼𝑖,2 + (1 − 𝛽𝑖,2)𝛾 + 𝛽𝑖,2𝑤𝑐,2

] , [
𝛽𝑖,1

2 𝜎𝜖
2 + 𝜎𝜂𝑖

2 𝛽𝑖,1𝛽𝑖,2𝑓𝑃𝑉(𝜖)𝜎𝜖
2 + 𝑓𝑃𝑉(𝜂)𝜎𝜂𝑖

2

𝛽𝑖,1𝛽𝑖,2𝑓𝑃𝑉(𝜖)𝜎𝜖
2 + 𝑓𝑃𝑉(𝜂)𝜎𝜂𝑖

2 𝛽𝑖,2
2 𝜎𝜖

2 + 𝜎𝜂𝑖
2 ])

≡ 𝒩(𝝁𝑐, 𝜴𝑐).

 

 

The sub-likelihood function for respondent 𝑖’s responses to CQ 𝑐 across both waves 

(𝒓𝑖𝑐 ≡ [𝑟𝑖𝑐,1, 𝑟𝑖𝑐,2]′) is 

 

𝑙𝑖𝑐(𝒓𝑖𝑐|𝜶𝑖 , 𝜷𝑖 , 𝛾, 𝒘𝑐, 𝜎𝜖 , 𝑓𝑃𝑉(𝜖), 𝜎𝜂𝑖
, 𝑓𝑃𝑉(𝜂))

= |𝜴𝑐|
−

1
2𝜙(𝜴𝑐

−
1
2(𝒓𝑖𝑐 − 𝝁𝑐)) ,

 

 

where 𝒘𝑐 ≡ [𝑤𝑐,1, 𝑤𝑐,2]′. 

 
11 In a variant of this MLE that allows 𝛾 to vary between the two waves, the cross-wave difference of 𝛾 is estimated 

to be small, 3.6 (SE = 1.0), relative to 𝛾’s point estimate of about 60. 
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Assuming independence across respondents and CQs, the log-likelihood function for CQ 

ratings from all respondents (𝒓⋅𝒞) is thus 

 

ln ℒ (𝒓⋅𝒞|𝜎𝛼 , 𝑓𝑃𝑉(𝛼), 𝜎𝛽, 𝑓𝑃𝑉(𝛽), 𝛾,𝒘𝒞 , 𝜎𝜖 , 𝑓𝑃𝑉(𝜖), 𝜇ln𝜎𝜂
, 𝜎ln𝜎𝜂

, 𝑓𝑃𝑉(𝜂))

= ∑ln

𝐼

𝑖=1

∫⋯∫∏𝑙𝑖𝑐(𝒓𝑖𝑐|𝜶𝑖 , 𝜷𝑖 , 𝛾,𝒘𝑐, 𝜎𝜖 , 𝑓𝑃𝑉(𝜖), 𝜎𝜂𝑖
, 𝑓𝑃𝑉(𝜂))

𝐶

𝑐=1

𝑓(𝜶𝑖)𝑓(𝜷𝑖)𝑓(𝜎𝜂𝑖
)𝑑𝜶𝑖𝑑𝜷𝑖𝑑𝜎𝜂𝑖

.
 

 

Utilizing hierarchical modeling to make the estimation feasible leads to the log-likelihood 

function 

 

lnℒ(𝒓⋅𝒞|{𝜶𝑖}, {𝜷𝑖}, 𝛾,𝒘𝒞 , 𝜎𝜖 , 𝑓𝑃𝑉(𝜖), 𝜎𝜂𝑖
, 𝑓𝑃𝑉(𝜂))

= ∑ ∑ln

𝐶

𝑐=1

𝐼

𝑖=1

𝑙𝑖𝑐(𝒓𝑖𝑐|𝜶𝑖 , 𝜷𝑖 , 𝛾, 𝒘𝑐, 𝜎𝜖 , 𝑓𝑃𝑉(𝜖), 𝜎𝜂𝑖
, 𝑓𝑃𝑉(𝜂)),

 

 

where 𝜶𝑖 and 𝜷𝑖 will be drawn from their respectively two-wave distributions specified at the 

start of this subsection, and 𝜎𝜂𝑖
 from ln 𝒩 (𝜇ln𝜎𝜂

, 𝜎ln𝜎𝜂

2 ). 

Table F.5 reports estimates from applying this MLE to Baseline and Bottomless 

responses on the 18 Baseline CQs from 2,472 respondents who provided such responses. The 

estimates suggest that the stretcher, shifter, and perception error are highly persistent while the 

trembling-hand error is not persistent. 

 

Table F.5. Estimates From 2-Wave CQ-Only MLE 

𝜎𝛼 7.48 

(0.15) 

𝛾 60.77 

(1.02) 

𝜎𝛽 0.27 

(0.01) 

𝜎𝜖 7.96 

(0.28) 

𝜇ln𝜎𝜂
 2.64 

(0.01) 
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𝜎ln𝜎𝜂
 0.30 

(0.01) 

𝑓𝑃𝑉(𝛼) 55.41% 

(2.18%) 

𝑓𝑃𝑉(𝛽) 88.50% 

(2.67%) 

𝑓𝑃𝑉(𝜖) 99.65% 

(0.16%) 

𝑓𝑃𝑉(𝜂) 3.21% 

(1.96%) 

Notes: The sample is 2,472 respondents 

who completed the 18 Baseline CQs in 

both Baseline survey and block 1 of 

Bottomless survey and passed quality 

control. Standard errors in parentheses. 

 

Appendix F Reference 

 

Le Cam, Lucien. “On Some Asymptotic Properties of Maximum Likelihood Estimates and 

Related Bayes’ Estimates.” University of California Publications in Statistics 1 (1953): 

277-330. 

 

G. Simulations 

This appendix details simulations we ran for investigating the finite-sample performance, 

robustness, and convergence speed of our scale-use-adjustment estimators. 

In our baseline simulations, we assume that our model of the translation function in 

equation (4) is correct, with parameter values similar to the estimates in Table 4,12 and we 

examine a variety of data-generating processes for common-scale SWB (see Section G.1). As 

expected, the estimators are biased when their assumptions are not met; for example, the MOM 

and comprehensive MLE estimators for 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) are biased when the co-skewness between 

𝑥𝑖, 𝑤𝑖𝑠 and 𝛽𝑖 is non-zero. In all the simulations we examine in which the respective assumptions 

of the MOM and comprehensive MLE estimators are satisfied, we cannot statistically detect bias. 

We cannot detect bias for the semi-parametric estimators across any of our baseline simulations. 

 
12 The simulations were done before the actual data underlying results in the main paper were finalized, leading to 

small differences between Table 4 and the “Truth” column of Table G.3. A comparison of the two shows that these 

differences are primarily evident in parameters associated with response errors. The more important parameter 

values pertaining to the shifter, stretcher, and center are virtually the same. 
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To examine robustness to misspecification, we conduct three sets of simulations: (i) the 

data-generating process has a quadratic rather than a linear translation function, with the variance 

of the quadratic coefficient across individuals equal to the value we estimate from our data (see 

Web Appendix B); (ii) the error terms in the data-generating process are t-distributed (with 5 

degrees of freedom, so that they have fatter tails) rather than normally distributed, with 

unchanged variance; and (iii) common-scale SWB 𝑤𝑖𝑠  in the data-generating process is quadratic 

in the stretcher 𝛽𝑖 (in contrast, we estimate our semi-parametric estimators with 𝐾 = 1, which 

effectively assumes that the conditional first-moments of 𝑤𝑖𝑠 are linear in 𝛽𝑖). Naturally, in all 

cases, our misspecified models generate biased parameter estimates. However, in all cases, the 

semi-parametric estimator generates estimates that are reasonably close to the truth in all 

scenarios, albeit with standard errors that tend to be somewhat larger than in the baseline 

simulations. 

Our baseline and robustness simulations above use 18 CQs and 3000 respondents to 

roughly match our Baseline data. To study the convergence speed of our estimators, we also run 

simulations with 𝐶 ∈ {2, 3, 9, 27, 81} and 𝐼 ∈ {100,1000, 10000}. Under our data-generating 

process, we find that 2 CQs appear to be sufficient for the semi-parametric estimators of 𝐸(𝑤𝑖𝑠) 

and 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑥𝑖) to converge in 𝐼 at square-root speed. For the comprehensive MLE estimator 

for 𝑉𝑎𝑟(𝑤𝑖𝑠), at least 3 CQs seem necessary to approximate square-root convergence rate in 𝐼. 

 

G.1. Data-Generating Processes 

We simulate individuals’ responses to 12 SWB questions, indexed by 𝑠, according to 

equation (4) and the following process of 𝑤𝑖𝑠: 

 

𝑤𝑖𝑠 = 𝑎𝑠 + 𝑏𝑠𝑥𝑖 + 𝑐𝑠𝛽𝑖 + 𝑑𝑠𝑥𝑖𝛽𝑖 + 𝑒𝑠(𝑣1,𝑠𝑓1,𝑖 + 0.32𝑣2,𝑠𝑓2,𝑖 + ⋯+ 0.32𝑣12,𝑠𝑓12,𝑖), 

 

where the coefficients 𝑎𝑠, 𝑏𝑠, 𝑐𝑠, 𝑑𝑠 and 𝑒𝑠 vary across 𝑠. We employ a factor structure (the term 

in parentheses) to model cross-𝑠 correlations between the 𝑤𝑖𝑠’s. The factors are independent of 

both 𝑥𝑖 and 𝛽𝑖, and (for no particular reason) we choose the same number of factors as the 

number of SWB questions (see below for details about how the 𝑓𝑘,𝑖’s and 𝑣𝑘,𝑖’s are determined). 

To examine our methods’ effectiveness in mitigating biases arising from scale-use heterogeneity, 

we choose the values of the parameters to create simple variations that sometimes induce biases 
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for a naïve estimator that ignores scale-use heterogeneity. Table G.1 details the coefficients’ 

values for each set of SWB-question responses we simulate, as well as what these coefficient 

values imply for the signs of the covariance between 𝑥𝑖 and 𝑤𝑖𝑠, the covariance between 𝛽𝑖 and 

𝑤𝑖𝑠, and the co-skewness between 𝛽𝑖, 𝑤𝑖𝑠 , and 𝑥𝑖. These quantities correspond to key bias terms 

when scale-use heterogeneity is ignored (see Section V). 

 

Table G.1. 𝒂𝒔, 𝒃𝒔, 𝒄𝒔, 𝒅𝒔 and 𝒆𝒔 in Simulations 

𝑠  𝑎𝑠 𝑏𝑠 𝑐𝑠 𝑑𝑠 𝑒𝑠 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠) 𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))] 

1 50 0 0 0 10√12 0 0 0 

2 50 0 0 0 20√12 0 0 0 

3 50 20 0 0 10√12 + 0 0 

4 50 10 0 0 10√12 + 0 0 

5 50 0 10 0 10√12 0 + 0 

6 50 0 20 0 10√12 0 + 0 

7 50 20 10 0 10√12 + + 0 

8 50 0 0 15 10√12 + + + 

9 50 0 0 30 10√12 + + + 

10 50 20 0 15 10√12 + + + 

11 50 0 10 15 10√12 + + + 

12 50 20 10 15 10√12 + + + 

 

Distributional assumptions about the shifter, stretcher, and response errors are the same 

as in equations (5) and (6). The distributional assumptions for 𝑥𝑖 and 𝑓𝑘,𝑖’s are the following: 

• 𝑥𝑖 is distributed as Bernoulli with 𝑃𝑟𝑜𝑏(𝑥𝑖 = 0) = 𝑃𝑟𝑜𝑏(𝑥𝑖 = 1) = 0.5. 

• 𝑓𝑘,𝑖’s are mutually independent factors distributed as standard normal, which are also 

independent from both 𝛽𝑖 and 𝑥𝑖. 

• 𝐯𝑘 ≡ [𝑣𝑘,1, 𝑣𝑘,2,⋯ , 𝑣𝑘,12]
′
 is the vector of quasi-loadings for the 𝑘th factor with ‖𝐯𝑘‖ =

1, and ⟨𝐯𝑘 , 𝐯𝑘′⟩ = 0 for 𝑘 ≠ 𝑘′. 

• The matrix 

[𝐯1, 𝐯2,⋯ , 𝐯12] 

  is the orthonormalized version of the following 12 × 12 dimensional matrix, 
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[
 
 
 
 
1 1 0 ⋯ 0
1 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 ⋯ 1
1 0 0 ⋯ 0]

 
 
 
 

, 

  through the modified Gram-Schmidt process (Trefethen and Bau, 1997). 

   

G.1.1. Data-Generating Processes When 𝒘𝒊𝒔 Is Quadratic in 𝜷𝒊 

We simulate individuals’ responses to 16 SWB questions according to the translation 

function in equation (4) and the following process of 𝑤𝑖𝑠: 

 

𝑤𝑖𝑠 = 𝑎𝑠 + 𝑏𝑠𝑥𝑖 + 𝑐𝑠𝛽𝑖 + 𝑑𝑠𝑥𝑖𝛽𝑖 + 𝑔𝑠𝛽𝑖
2 + 𝑒𝑠(𝑣1,𝑠𝑓1,𝑖 + 0.32𝑣2,𝑠𝑓2,𝑖 + ⋯+ 0.32𝑣16,𝑠𝑓16,𝑖), 

 

where the coefficients 𝑎𝑠, 𝑏𝑠, 𝑐𝑠, 𝑑𝑠, 𝑒𝑠, and 𝑔𝑠 vary across 𝑠. The variations in 𝑎𝑠, 𝑏𝑠, 𝑐𝑠, 𝑑𝑠, and 

𝑒𝑠 are minimal because the above set of simulations already allows us to study the effects of their 

variations. Here we focus on allowing 𝑔𝑠  to vary for each possible combination of non-zero 𝑎𝑠, 

𝑏𝑠, 𝑐𝑠, 𝑑𝑠, and 𝑒𝑠. This allows us to see how the estimators that assume that the conditional first 

moments of 𝑤𝑖𝑠 are linear in 𝛽𝑖 would perform when 𝑤𝑖𝑠 is actually quadratic in 𝛽𝑖. Table G.2 

details the values of the parameters. The distributional assumptions for the random variables are 

the same as above. 

 

Table G.2. 𝒂𝒔, 𝒃𝒔, 𝒄𝒔, 𝒅𝒔, 𝒈𝒔 and 𝒆𝒔 in Simulations 

𝑠  𝑎𝑠 𝑏𝑠 𝑐𝑠 𝑑𝑠 𝑔𝑠 𝑒𝑠 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) 𝐶𝑜𝑣(𝑤𝑖𝑠, 𝛽𝑖) 𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))] 

1 50 0 0 0 1 40 0 + 0 

2 50 0 0 0 5 40 0 + 0 

3 50 10 0 0 1 40 + + 0 

4 50 10 0 0 5 40 + + 0 

5 50 0 10 0 1 40 0 + 0 

6 50 0 10 0 5 40 0 + 0 

7 50 10 10 0 1 40 + + 0 

8 50 10 10 0 5 40 + + 0 

9 50 0 0 15 1 40 + + + 

10 50 0 0 15 5 40 + + + 

11 50 10 0 15 1 40 + + + 

12 50 10 0 15 5 40 + + + 
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𝑠  𝑎𝑠 𝑏𝑠 𝑐𝑠 𝑑𝑠 𝑔𝑠 𝑒𝑠 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) 𝐶𝑜𝑣(𝑤𝑖𝑠, 𝛽𝑖) 𝐸[(𝛽𝑖 − 𝐸(𝛽𝑖))(𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠))(𝑥𝑖 − 𝐸(𝑥𝑖))] 

13 50 0 10 15 1 40 + + + 

14 50 0 10 15 5 40 + + + 

15 50 10 10 15 1 40 + + + 

16 50 10 10 15 5 40 + + + 

 

G.2. Simulation Results 

This subsection reports estimates of the hyperparameters and three SWB moments of 

interest (to conserve space, we omit tables for 𝐶𝑜𝑣(𝑤𝑖𝑠 , 𝑤𝑖𝑠′)) from a variety of simulations. 

Section G.2.1 reports the baseline simulation with 18 CQs and 3000 respondents. Section G.2.2 

reports three sets of robustness simulations, corresponding to data generating processes with a 

quadratic-translation function, Student-t errors, and 𝑤𝑖𝑠 quadratic in 𝛽𝑖. Section G.2.3 reports 15 

sets of simulations with 𝐶 ∈ {2, 3, 9, 27, 81} and 𝐼 ∈ {100, 1000,10000}. 

 

G.2.1. Baseline Simulation 

Our baseline simulation suggests that the six hyperparameters can be estimated very 

accurately with 3000 respondents and 18 CQs (Table G.3). 

Beginning with our estimators for 𝐸(𝑤𝑖𝑠), Table G.4 shows that the naïve estimator 

ignoring scale use and our MOM estimator are biased when 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠) is not zero (𝑠 =

5,6,… ,12), while both our semi-parametric estimator and comprehensive MLE estimator are 

unbiased.  

Turning to our estimators for 𝐶𝑜𝑣(𝛽𝑖 , 𝑤𝑖𝑠), Table G.5 shows that when the co-skewness 

between 𝑤𝑖𝑠, 𝑥𝑖, and 𝛽𝑖 is non-zero (𝑠 = 8,9,… ,12), the naïve estimator, our MOM estimator 

and our comprehensive MLE estimator are biased. Only the semi-parametric estimator is able to 

remove the co-skewness bias. 

Finally, we examine our estimators for 𝑉𝑎𝑟(𝑤𝑖𝑠). Table G.6 shows that the naïve 

estimator is heavily biased upward. Estimates from our MOM estimator are closer to the truth 

because the MOM estimator can remove the biases due to response errors and partially the bias 

due to scale use. In comparison, our semi-parametric estimator performs better when 𝑤𝑖𝑠 and 𝛽𝑖 

are not independent, and the advantage is most apparent when the co-skewness between 𝑤𝑖𝑠 , 𝛽𝑖, 

and 𝑥𝑖 is non-zero (𝑠 = 8,9,… ,12). The simulation’s data-generating process does not meet the 

assumptions of our comprehensive MLE estimator, particularly regarding the normality of 𝑤𝑖𝑠. 
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Consequently, its performance is suboptimal, as anticipated. Also as anticipated, when the 

comprehensive MLE estimator’s assumptions are satisfied, it outperforms the other methods, 

being both unbiased and exhibiting the smallest standard errors, as shown in Table G.7. 

 

Table G.3. Truth and Estimates of Hyperparameters in Baseline Simulation 

Parameter Truth Estimate 

𝜎𝛼  7.81 7.85 (0.150) 

𝛾  59.9 59.9 (0.832) 

𝜎𝛽  0.3 0.300 (0.00722) 

𝜎𝜖  6.5 6.58 (0.436) 

𝜇ln𝜎𝜂
  2.73 2.73 (0.0152) 

𝜎ln𝜎𝜂
  0.283 0.283 (0.00778) 

Note: Standard errors in parentheses. 

 

Table G.4. Truth and Estimates of 𝑬(𝒘𝒊𝒔) in Baseline Simulation 

𝑠  Truth Ignore scale use/MOM Semi-parametric Comprehensive MLE 

1 50 50.03 (0.49) 49.98 (0.54) 49.99 (0.49) 

2 50 50.06 (0.62) 50.02 (0.66) 50.04 (0.60) 

3 60 59.99 (0.52) 60.01 (0.57) 59.98 (0.52) 

4 55 54.95 (0.42) 55.00 (0.47) 55.00 (0.44) 

5 60 60.91 (0.51) 60.11 (0.48) 60.03 (0.46) 

6 70 71.79 (0.49) 70.17 (0.55) 70.09 (0.50) 

7 70 70.85 (0.42) 70.09 (0.52) 70.03 (0.44) 

8 57.5 58.16 (0.40) 57.56 (0.44) 57.53 (0.41) 

9 65 66.27 (0.53) 65.04 (0.55) 64.95 (0.52) 

10 67.5 68.12 (0.53) 67.54 (0.56) 67.51 (0.54) 

11 67.5 69.03 (0.48) 67.62 (0.49) 67.54 (0.47) 

12 77.5 79.04 (0.59) 77.70 (0.60) 77.60 (0.60) 

Note: Standard errors in parentheses. 

 

Table G.5. Truth and Estimates of 𝑪𝒐𝒗(𝒙𝒊,𝒘𝒊𝒔) in Baseline Simulation 

𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

1 0 0.02 (0.21) 0.01 (0.21) 0.02 (0.24) -0.03 (0.20) 
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𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

2 0 0.03 (0.32) 0.02 (0.32) 0.03 (0.33) -0.01 (0.31) 

3 5 5.01 (0.22) 5.00 (0.22) 5.03 (0.25) 4.98 (0.21) 

4 2.5 2.53 (0.23) 2.51 (0.22) 2.52 (0.23) 2.48 (0.21) 

5 0 0.06 (0.23) 0.04 (0.23) 0.03 (0.24) -0.02 (0.22) 

6 0 0.04 (0.23) 0.03 (0.22) 0.03 (0.25) -0.06 (0.21) 

7 5 5.00 (0.20) 4.99 (0.20) 5.02 (0.22) 4.95 (0.20) 

8 3.75 4.11 (0.23) 4.09 (0.23) 3.80 (0.23) 4.03 (0.23) 

9 7.5 8.21 (0.26) 8.20 (0.25) 7.60 (0.29) 8.12 (0.26) 

10 8.75 9.13 (0.24) 9.11 (0.23) 8.83 (0.24) 9.06 (0.22) 

11 3.75 4.08 (0.25) 4.07 (0.25) 3.74 (0.27) 3.99 (0.23) 

12 8.75 9.08 (0.30) 9.07 (0.29) 8.78 (0.31) 9.00 (0.28) 

Note: Standard errors in parentheses. 

 

Table G.6. Truth and Estimates of 𝑽𝒂𝒓(𝒘𝒊𝒔) in Baseline Simulation 

𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

1 212.64 624.13 (19.38) 212.43 (14.92) 220.35 (22.92) 254.45 (14.88) 

2 850.56 1323.81 (40.48) 854.43 (38.18) 872.57 (54.02) 896.83 (35.55) 

3 312.64 723.32 (20.19) 311.96 (18.11) 328.66 (33.06) 253.59 (13.88) 

4 237.64 646.46 (17.59) 239.57 (14.93) 250.88 (25.47) 255.46 (14.70) 

5 221.64 628.11 (19.96) 224.08 (16.66) 228.67 (32.69) 264.33 (14.41) 

6 248.64 703.34 (21.56) 250.96 (18.45) 268.03 (51.02) 286.47 (16.35) 

7 321.64 763.95 (21.63) 322.97 (21.08) 337.38 (55.09) 261.67 (16.22) 

8 279.02 709.72 (20.50) 302.18 (18.43) 294.04 (33.52) 268.71 (16.57) 

9 478.14 1011.15 (29.76) 560.00 (27.97) 507.75 (66.99) 297.17 (18.49) 

10 529.02 1027.85 (28.98) 574.17 (27.55) 557.95 (73.94) 265.07 (16.76) 

11 301.52 767.87 (23.39) 325.26 (20.43) 322.95 (56.36) 286.47 (15.72) 

12 551.52 1116.30 (36.30) 595.78 (32.54) 584.83 (95.14) 284.27 (16.35) 

Note: Standard errors in parentheses. 

 

Table G.7. Truth and Estimates of 𝑽𝒂𝒓(𝒘𝒊𝒔) in Simulation Under Normal 𝒘𝒊𝒔 

𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

1 273.81 672.09 (19.36) 275.99 (15.89) 282.96 (35.20) 268.76 (13.14) 

2 263.96 666.45 (20.18) 262.59 (18.39) 269.54 (30.74) 256.85 (14.49) 

3 222.93 606.94 (17.83) 222.25 (17.01) 231.55 (34.41) 218.64 (12.51) 
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𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

4 370.46 801.53 (25.02) 370.75 (20.47) 377.43 (36.03) 364.50 (18.97) 

5 160.61 536.48 (13.75) 159.75 (13.38) 166.06 (30.57) 159.86 (9.70) 

6 121.62 500.27 (12.85) 120.65 (13.14) 127.44 (31.06) 121.57 (8.37) 

7 144.17 518.09 (16.74) 142.10 (15.49) 151.62 (33.00) 142.44 (10.26) 

8 106.52 485.79 (13.87) 105.85 (12.23) 114.08 (27.38) 104.84 (9.48) 

9 239.49 633.36 (16.76) 238.68 (16.61) 245.73 (35.81) 234.74 (12.26) 

10 253.74 643.37 (20.96) 252.37 (18.16) 261.14 (32.46) 246.36 (14.49) 

11 226.82 630.80 (19.74) 226.96 (16.40) 234.08 (33.97) 222.08 (12.91) 

12 250.06 643.59 (16.34) 251.08 (15.48) 265.26 (34.72) 244.30 (14.08) 

Notes: 𝑤𝑖𝑠’s distribution is joint normal with moments calibrated to the estimated moments for the first 12 aspects 

of Table A.1. Standard errors in parentheses. 

 

G.2.2. Robustness Simulations 

We ran three sets of simulations to investigate the robustness of our estimators to 

misspecifications. 

In the first set of simulations, we specify a quadratic translation function for the data-

generating process that is similar to the function we estimate in Appendix B: 

 

𝑟𝑖𝑞 − 𝛾 = 𝛼𝑖 + 𝛽𝑖(𝑤𝑖𝑞 − 𝛾) + 𝛿𝑖(𝑤𝑖𝑞 − 𝛾)
2
+ 𝛽𝑖𝜖𝑖𝑞 + 𝜂𝑖𝑞 , 

 

where the distribution of 𝛿𝑖 is calibrated based on our data (see Web Appendix B.2). Our 

estimators assume the linear translation function of equation (4). Results in Tables G.8-11 

suggest that, not surprisingly, the estimates tend to be biased, but the magnitudes of the biases 

are mild overall. 

The second set of robustness simulations we ran changes the response errors’ 

distributions from normal to Student’s t (with the response-error variances held constant) in the 

data-generating process, while our estimators still assume normality for the response errors. 

Tables G.8-11 show that the estimates from our estimators barely change. 

The third set of simulations we conducted specifies the data-generating process’s 𝑤𝑖𝑠  as 

being quadratic in 𝛽𝑖 (as detailed in Section G.1.1 above), while our semi-parametric method by 

default continues approximating the (conditional) first moments of 𝑤𝑖𝑠 as being linear in 𝛽𝑖 (i.e., 
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we implement the semi-parametric method setting 𝐾 = 1). Tables G.12-14 show that our semi-

parametric estimator performs well in these simulations despite the misspecification. 

 

Table G.8. Truth and Estimates of Hyperparameters in Robustness Simulations 

Parameter Truth Quadratic translation function Student-t errors 𝑤𝑖𝑠 quadratic in 𝛽𝑖 

𝜎𝛼  7.81 7.82 (0.129) 7.83 (0.149) 7.84 (0.139) 

𝛾  59.9 60.9 (0.714) 59.8 (0.767) 59.9 (0.663) 

𝜎𝛽  0.3 0.326 (0.00760) 0.299 (0.00739) 0.300 (0.00658) 

𝜎𝜖  6.5 5.96 (0.428) 6.38 (0.430) 6.62 (0.431) 

𝜇ln𝜎𝜂
  2.73 2.75 (0.0131) 2.70 (0.0170) 2.73 (0.0155) 

𝜎ln𝜎𝜂
  0.283 0.274 (0.00785) 0.339 (0.0110) 0.284 (0.00874) 

Note: Standard errors in parentheses. 

 

Table G.9. Truth and Estimates of 𝑬(𝒘𝒊𝒔) in Robustness Simulations 

𝑠  Truth 

Quadratic translation function in DGP Student-t errors in DGP 

Semi-

parametric 

Comprehensive 

MLE 

Semi-

parametric 

Comprehensive 

MLE 

1 50 50.01 (0.44) 50.06 (0.43) 50.02 (0.48) 50.00 (0.44) 

2 50 50.56 (0.77) 50.50 (0.70) 49.98 (0.60) 49.97 (0.60) 

3 60 60.14 (0.60) 60.02 (0.58) 60.05 (0.49) 60.05 (0.44) 

4 55 55.07 (0.54) 55.05 (0.52) 54.99 (0.46) 55.00 (0.45) 

5 60 60.19 (0.55) 60.01 (0.53) 60.10 (0.49) 60.08 (0.46) 

6 70 70.63 (0.55) 70.13 (0.51) 70.26 (0.52) 70.13 (0.47) 

7 70 70.67 (0.58) 70.17 (0.54) 70.15 (0.61) 70.10 (0.58) 

8 57.5 57.74 (0.49) 57.55 (0.44) 57.52 (0.57) 57.51 (0.54) 

9 65 65.71 (0.71) 65.06 (0.67) 65.15 (0.62) 65.05 (0.58) 

10 67.5 68.32 (0.63) 67.74 (0.58) 67.66 (0.57) 67.63 (0.53) 

11 67.5 68.19 (0.67) 67.62 (0.59) 67.62 (0.52) 67.53 (0.48) 

12 77.5 78.82 (0.72) 77.73 (0.67) 77.66 (0.61) 77.56 (0.55) 

Note: Standard errors in parentheses. 
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Table G.10. Truth and Estimates of 𝑪𝒐𝒗(𝒙𝒊,𝒘𝒊𝒔) in Robustness Simulations 

𝑠  Truth 

Quadratic translation function in DGP Student-t errors in DGP 

MOM 

Semi-

parametric 

Comprehensive 

MLE MOM 

Semi-

parametric 

Comprehensive 

MLE 

1 0 0.03 (0.22) 0.05 (0.26) -0.01 (0.21) -0.03 (0.25) -0.04 (0.29) -0.06 (0.24) 

2 0 0.00 (0.36) 0.02 (0.39) -0.05 (0.35) -0.02 (0.31) -0.02 (0.34) -0.06 (0.30) 

3 5 4.99 (0.25) 5.10 (0.26) 4.94 (0.24) 5.00 (0.21) 5.04 (0.23) 4.97 (0.21) 

4 2.5 2.50 (0.22) 2.54 (0.25) 2.45 (0.20) 2.52 (0.22) 2.52 (0.23) 2.47 (0.20) 

5 0 -0.02 (0.23) -0.01 (0.25) -0.09 (0.22) 0.02 (0.23) 0.02 (0.26) -0.03 (0.23) 

6 0 0.03 (0.24) 0.05 (0.28) -0.08 (0.21) -0.02 (0.25) -0.03 (0.27) -0.10 (0.23) 

7 5 5.02 (0.25) 5.22 (0.27) 4.90 (0.22) 4.99 (0.24) 5.03 (0.28) 4.92 (0.22) 

8 3.75 4.08 (0.21) 3.88 (0.26) 4.01 (0.21) 4.07 (0.21) 3.75 (0.26) 4.00 (0.20) 

9 7.5 8.21 (0.24) 7.89 (0.26) 8.08 (0.23) 8.15 (0.24) 7.54 (0.27) 8.03 (0.23) 

10 8.75 9.07 (0.24) 9.07 (0.25) 8.95 (0.22) 9.10 (0.23) 8.82 (0.26) 9.03 (0.22) 

11 3.75 4.10 (0.24) 3.95 (0.26) 3.97 (0.23) 4.09 (0.24) 3.78 (0.28) 3.97 (0.22) 

12 8.75 9.14 (0.25) 9.34 (0.27) 8.91 (0.25) 9.09 (0.28) 8.82 (0.32) 8.99 (0.28) 

Note: Standard errors in parentheses. 

 

Table G.11. Truth and Estimates of 𝑽𝒂𝒓(𝒘𝒊𝒔) in Robustness Simulations 

𝑠  Truth 

Quadratic translation function in DGP Student-t errors in DGP 

Semi-

parametric 

Comprehensive 

MLE 

Semi-

parametric 

Comprehensive 

MLE 

1 212.64 220.00 (31.46) 209.29 (15.49) 218.38 (29.59) 261.84 (16.94) 

2 850.56 992.54 (75.87) 905.08 (36.17) 872.09 (50.57) 904.07 (30.04) 

3 312.64 350.97 (36.28) 206.42 (14.00) 323.55 (43.13) 261.20 (17.66) 

4 237.64 251.39 (30.76) 205.06 (12.93) 249.76 (40.18) 262.21 (16.03) 

5 221.64 247.81 (35.84) 212.71 (13.74) 227.61 (40.35) 265.71 (14.71) 

6 248.64 307.94 (45.11) 242.75 (15.81) 259.06 (50.40) 296.25 (18.22) 

7 321.64 411.74 (47.98) 219.25 (14.66) 340.02 (48.22) 267.18 (16.11) 

8 279.02 306.35 (36.92) 217.24 (16.07) 289.07 (40.17) 272.83 (14.33) 

9 478.14 565.98 (61.46) 257.79 (15.21) 496.09 (65.19) 305.51 (16.71) 

10 529.02 657.28 (62.73) 234.62 (16.80) 545.44 (54.69) 272.86 (16.52) 

11 301.52 352.67 (57.62) 234.33 (17.80) 322.51 (52.48) 291.42 (16.82) 

12 551.52 810.59 (86.68) 290.41 (19.55) 575.17 (81.85) 293.00 (20.23) 

Note: Standard errors in parentheses. 
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Table G.12. Truth and Estimates of 𝑬(𝒘𝒊𝒔) in Robustness Simulation with 𝒘𝒊𝒔 Quadratic in 

𝜷𝒊 in DGP 

𝑠  Truth Ignore scale use/MOM Semi-parametric Comprehensive MLE 

1 51.09 51.34 (0.46) 51.12 (0.51) 51.15 (0.45) 

2 55.45 56.37 (0.53) 55.34 (0.57) 55.41 (0.54) 

3 56.09 56.30 (0.50) 56.09 (0.55) 56.13 (0.51) 

4 60.45 61.32 (0.44) 60.34 (0.51) 60.39 (0.46) 

5 61.09 62.15 (0.51) 61.12 (0.58) 61.14 (0.53) 

6 65.45 67.26 (0.47) 65.44 (0.49) 65.46 (0.48) 

7 66.09 67.13 (0.46) 66.11 (0.52) 66.12 (0.46) 

8 70.45 72.29 (0.46) 70.46 (0.51) 70.49 (0.47) 

9 58.59 59.44 (0.49) 58.63 (0.56) 58.60 (0.52) 

10 62.95 64.49 (0.55) 62.86 (0.59) 62.90 (0.56) 

11 63.59 64.43 (0.57) 63.66 (0.62) 63.61 (0.59) 

12 67.95 69.47 (0.56) 67.88 (0.61) 67.88 (0.54) 

13 68.59 70.37 (0.61) 68.71 (0.65) 68.69 (0.61) 

14 72.95 75.40 (0.54) 72.95 (0.62) 72.92 (0.56) 

15 73.59 75.35 (0.58) 73.72 (0.60) 73.70 (0.55) 

16 77.95 80.38 (0.58) 78.00 (0.59) 77.99 (0.57) 

Note: Standard errors in parentheses. 

 

Table G.13. Truth and Estimates of 𝑪𝒐𝒗(𝒙𝒊,𝒘𝒊𝒔) in Robustness Simulation with 𝒘𝒊𝒔 

Quadratic in 𝜷𝒊 in DGP 

𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

1 0 0.04 (0.26) 0.03 (0.24) 0.03 (0.26) -0.03 (0.24) 

2 0 0.03 (0.23) 0.02 (0.22) 0.02 (0.23) -0.05 (0.22) 

3 2.5 2.53 (0.24) 2.52 (0.22) 2.53 (0.26) 2.46 (0.22) 

4 2.5 2.53 (0.27) 2.52 (0.25) 2.53 (0.27) 2.46 (0.26) 

5 0 0.00 (0.25) -0.01 (0.25) 0.00 (0.25) -0.08 (0.23) 

6 0 0.05 (0.23) 0.04 (0.22) 0.05 (0.26) -0.05 (0.22) 

7 2.5 2.50 (0.21) 2.48 (0.19) 2.50 (0.21) 2.41 (0.20) 

8 2.5 2.50 (0.20) 2.49 (0.21) 2.52 (0.23) 2.39 (0.20) 

9 3.75 4.15 (0.23) 4.14 (0.22) 3.83 (0.26) 4.05 (0.22) 

10 3.75 4.11 (0.23) 4.10 (0.23) 3.81 (0.25) 4.00 (0.23) 
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𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

11 6.25 6.62 (0.26) 6.60 (0.26) 6.32 (0.30) 6.52 (0.26) 

12 6.25 6.56 (0.28) 6.55 (0.27) 6.26 (0.29) 6.45 (0.27) 

13 3.75 4.11 (0.23) 4.10 (0.22) 3.81 (0.24) 3.99 (0.21) 

14 3.75 4.09 (0.26) 4.07 (0.25) 3.80 (0.30) 3.93 (0.25) 

15 6.25 6.59 (0.28) 6.58 (0.27) 6.29 (0.30) 6.48 (0.27) 

16 6.25 6.57 (0.25) 6.55 (0.24) 6.29 (0.28) 6.43 (0.23) 

Note: Standard errors in parentheses. 

 

Table G.14. Truth and Estimates of 𝑽𝒂𝒓(𝒘𝒊𝒔) in Robustness Simulation with 𝒘𝒊𝒔 

Quadratic in 𝜷𝒊 in DGP 

𝑠  Truth Ignore scale use MOM Semi-parametric Comprehensive MLE 

1 253.98 664.61 (19.36) 252.91 (16.47) 259.13 (26.07) 246.74 (15.33) 

2 263 667.62 (20.42) 267.46 (18.48) 269.65 (30.87) 259.48 (16.47) 

3 278.98 689.32 (18.28) 278.95 (14.06) 285.09 (25.29) 247.55 (13.46) 

4 288 702.63 (21.90) 290.90 (19.73) 297.80 (35.03) 257.04 (16.88) 

5 266.58 677.72 (22.59) 266.37 (19.84) 270.43 (33.20) 258.12 (17.06) 

6 290 732.64 (21.66) 297.75 (19.38) 305.87 (37.24) 283.79 (17.25) 

7 291.58 720.17 (18.03) 292.99 (16.51) 303.42 (37.44) 259.83 (13.77) 

8 315.01 785.92 (23.01) 323.70 (18.29) 333.90 (46.14) 283.80 (15.57) 

9 323.05 755.55 (21.22) 343.21 (18.79) 330.31 (33.86) 260.01 (15.04) 

10 342.88 798.38 (21.61) 370.99 (18.24) 362.03 (43.18) 281.90 (14.84) 

11 423.05 889.27 (27.06) 455.58 (25.77) 429.37 (38.38) 261.93 (16.55) 

12 442.88 940.17 (33.32) 479.97 (26.02) 447.74 (55.64) 283.20 (15.89) 

13 349.15 828.70 (24.75) 372.64 (22.73) 360.50 (57.03) 285.46 (16.53) 

14 383.38 922.70 (28.03) 418.27 (22.43) 410.04 (68.50) 322.56 (16.34) 

15 449.15 980.61 (29.91) 485.59 (26.82) 457.38 (65.68) 287.01 (17.70) 

16 483.38 1077.68 (31.71) 525.10 (24.74) 503.90 (82.94) 318.27 (16.81) 

Note: Standard errors in parentheses. 

 

G.2.3. Simulations Under Various 𝑪 and 𝑰 

To study the convergence speed of our estimators, we ran 15 simulations for all 

combinations of 𝐶 ∈ {2, 3, 9, 27, 81} and 𝐼 ∈ {100, 1000,10000}. Theoretically, we expect 

square-root convergence in 𝐼 as long as 𝐶 is large enough, but holding 𝐼 fixed at any finite value, 

we expect a positive standard error even as 𝐶 approaches infinity (because sampling variance 



 79 

remains positive for any finite 𝐼). Over the finite range of 𝐶 we examine, this will create the 

appearance of slower-than-square-root convergence in 𝐶. Our simulations below serve to 

confirm and quantify these theoretical expectations. 

Starting with our estimators of the hyperparameters, Table G.15 shows that the 

convergence speeds in 𝐼 of 𝜎𝛽 and 𝜎𝜖 are more sensitive to 𝐶 than the other hyperparameters are. 

The convergence of 𝜎𝛽 and 𝜎𝜖 reaches square-root speed in 𝐼 when 𝐶 ≥ 9 and can be slower with 

smaller 𝐶. The average convergence speed in 𝐶 across all the hyperparameters is slower than 

square root even at 𝐼 = 10,000. 

Turning to our estimators of 𝐸(𝑤𝑖𝑠) and 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠), Tables G.16 and G.17 show that, 

with 2 CQs, we cannot reject the hypothesis of square-root convergence in 𝐼 of our semi-

parametric and comprehensive MLE estimators. The MOM estimator for 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠) also 

reaches square-root average convergence rate in 𝐼 at 2 CQs. The convergence rates in 𝐶 are very 

slow across all the three levels of 𝐼 we investigate. 

For estimating 𝑉𝑎𝑟(𝑤𝑖𝑠), our comprehensive MLE converges at the square-root rate in 𝐼 

when 𝐶 ≥ 3, while our semi-parametric estimator converges in 𝐼 at slower than square-root 

speed before around 9 CQs (see Table G.18). Both estimators appear to converge in 𝐶 at slower 

than square-root speed. 

These analyses suggest that the optimal number of CQs varies with the moment of 𝑤𝑖𝑠 of 

interest. If the interest is in estimating 𝐸(𝑤𝑖𝑠) and 𝐶𝑜𝑣(𝑥𝑖 , 𝑤𝑖𝑠), at least 2 CQs are recommended 

for the convergence in 𝐼 to reach square-root speed. For estimating 𝑉𝑎𝑟(𝑤𝑖𝑠) using our 

comprehensive MLE estimator, at least 3 CQs are recommended. The tradeoff between 

additional respondents (for which covariates would need to be collected) and additional CQs 

depends on the relative costs and the levels of 𝐶 and 𝐼. However, if CQs are an additional 

module on an existing survey, after meeting the minimum required number of CQs, we 

recommend prioritizing getting that minimum number of respondents on the full sample. 

 

Table G.15. Truth and Estimates of Hyperparameters in Simulations with Various 𝑰 and 𝑪 

Parameter Truth 𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

𝐶 = 2      

𝜎𝛼  7.8 6.1 (3.6) 7.6 (1.2) 7.6 (0.6) 

𝛾  59.9 -9.0 (37.4) 45.4 (28.7) 61.0 (3.9) 
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Parameter Truth 𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

𝜎𝛽  0.3 0.1 (0.1) 0.1 (0.1) 0.3 (0.0) 

𝜎𝜖  6.5 17.4 (1.8) 12.9 (4.7) 6.9 (1.6) 

𝜇ln𝜎𝜂
  2.7 0.8 (0.7) 2.6 (0.4) 2.7 (0.0) 

𝜎ln𝜎𝜂
  0.3 0.5 (0.2) 0.3 (0.1) 0.3 (0.0) 

     

𝐶 = 3      

𝜎𝛼  7.8 7.2 (2.9) 7.5 (0.7) 7.7 (0.2) 

𝛾  59.9 0.8 (40.2) 62.8 (21.3) 60.4 (2.3) 

𝜎𝛽  0.3 0.1 (0.1) 0.2 (0.1) 0.3 (0.0) 

𝜎𝜖  6.5 16.9 (2.0) 9.8 (4.8) 6.8 (1.2) 

𝜇ln𝜎𝜂
  2.7 1.2 (1.0) 2.7 (0.2) 2.7 (0.0) 

𝜎ln𝜎𝜂
  0.3 0.4 (0.2) 0.3 (0.1) 0.3 (0.0) 

     

𝐶 = 9      

𝜎𝛼  7.8 8.4 (1.7) 7.9 (0.3) 7.8 (0.1) 

𝛾  59.9 41.4 (26.6) 59.9 (2.2) 59.9 (0.7) 

𝜎𝛽  0.3 0.2 (0.1) 0.3 (0.0) 0.3 (0.0) 

𝜎𝜖  6.5 13.2 (5.0) 6.6 (1.4) 6.5 (0.5) 

𝜇ln𝜎𝜂
  2.7 2.2 (0.9) 2.7 (0.1) 2.7 (0.0) 

𝜎ln𝜎𝜂
  0.3 0.4 (0.2) 0.3 (0.0) 0.3 (0.0) 

     

𝐶 = 27      

𝜎𝛼  7.8 8.6 (0.7) 7.9 (0.2) 7.8 (0.1) 

𝛾  59.9 58.5 (3.1) 59.8 (1.1) 60.0 (0.4) 

𝜎𝛽  0.3 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 

𝜎𝜖  6.5 7.1 (2.0) 6.6 (0.6) 6.5 (0.2) 

𝜇ln𝜎𝜂
  2.7 2.7 (0.1) 2.7 (0.0) 2.7 (0.0) 

𝜎ln𝜎𝜂
  0.3 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 

     

𝐶 = 81      

𝜎𝛼  7.8 8.6 (0.6) 7.9 (0.2) 7.8 (0.1) 

𝛾  59.9 58.7 (3.1) 59.8 (1.0) 59.9 (0.4) 

𝜎𝛽  0.3 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 
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Parameter Truth 𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

𝜎𝜖  6.5 7.0 (1.5) 6.6 (0.4) 6.5 (0.1) 

𝜇ln𝜎𝜂
  2.7 2.7 (0.1) 2.7 (0.0) 2.7 (0.0) 

𝜎ln𝜎𝜂
  0.3 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 

Note: Standard errors in parentheses. 

 

Table G.16. Truth and Estimates of 𝑬(𝒘𝒊𝒔) in Simulations with Various 𝑰 and 𝑪 

𝑠  Truth 

𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

𝐶 = 2         

1 50.0 50.1 (2.7) 50.2 (2.3) 50.2 (1.0) 50.2 (0.8) 49.8 (0.3) 50.0 (0.3) 

2 50.0 49.8 (4.2) 49.5 (3.7) 50.2 (1.3) 50.0 (1.0) 49.9 (0.4) 50.1 (0.4) 

3 60.0 60.6 (2.9) 60.7 (2.7) 59.8 (1.1) 60.0 (0.9) 60.1 (0.3) 60.0 (0.3) 

4 55.0 54.9 (2.8) 55.0 (2.6) 55.1 (0.9) 55.1 (0.8) 55.0 (0.3) 55.0 (0.3) 

5 60.0 60.3 (2.6) 60.7 (2.5) 60.3 (1.0) 60.7 (0.9) 60.5 (0.3) 60.0 (0.3) 

6 70.0 70.5 (3.4) 71.4 (2.8) 70.2 (1.0) 71.3 (1.1) 71.2 (0.6) 70.0 (0.4) 

7 70.0 70.6 (3.1) 71.4 (3.0) 69.9 (1.1) 70.7 (1.1) 70.8 (0.5) 70.0 (0.4) 

8 57.5 57.8 (3.0) 58.1 (2.7) 57.6 (1.0) 58.1 (0.9) 57.8 (0.3) 57.5 (0.4) 

9 65.0 65.5 (3.8) 66.3 (2.8) 65.2 (1.2) 65.9 (1.2) 65.9 (0.5) 65.0 (0.3) 

10 67.5 67.4 (3.7) 68.0 (2.9) 67.3 (1.2) 68.0 (1.1) 68.1 (0.5) 67.4 (0.4) 

11 67.5 68.3 (3.4) 68.8 (3.0) 67.8 (1.1) 68.7 (1.0) 68.5 (0.5) 67.5 (0.3) 

12 77.5 78.4 (4.0) 79.3 (3.7) 77.4 (1.5) 78.6 (1.5) 78.8 (0.7) 77.4 (0.4) 

        

𝐶 = 3         

1 50.0 50.5 (2.5) 50.3 (2.2) 50.1 (1.0) 50.1 (0.8) 49.9 (0.3) 50.0 (0.3) 

2 50.0 50.5 (4.0) 50.3 (3.9) 50.3 (1.3) 50.2 (1.1) 49.9 (0.5) 50.1 (0.4) 

3 60.0 60.3 (2.8) 60.2 (2.6) 60.0 (1.0) 60.0 (0.8) 60.0 (0.3) 60.0 (0.3) 

4 55.0 55.5 (3.1) 55.4 (2.5) 55.1 (0.9) 55.1 (0.7) 55.0 (0.3) 55.0 (0.3) 

5 60.0 60.1 (3.2) 60.6 (2.7) 60.2 (1.0) 60.4 (0.8) 60.4 (0.3) 60.0 (0.3) 

6 70.0 70.7 (3.1) 71.5 (2.7) 70.5 (1.3) 71.0 (1.1) 70.8 (0.4) 70.0 (0.3) 

7 70.0 69.7 (3.4) 70.3 (3.2) 70.1 (1.4) 70.5 (1.2) 70.6 (0.4) 70.0 (0.3) 

8 57.5 57.7 (2.9) 57.9 (2.5) 57.8 (1.1) 57.9 (0.9) 57.7 (0.3) 57.5 (0.3) 

9 65.0 65.7 (3.7) 66.3 (3.1) 65.4 (1.3) 65.6 (1.2) 65.6 (0.4) 64.9 (0.3) 

10 67.5 67.6 (3.3) 68.1 (3.0) 67.6 (1.3) 67.9 (1.0) 68.0 (0.4) 67.5 (0.3) 

11 67.5 68.1 (3.3) 68.7 (2.9) 68.0 (1.3) 68.4 (1.1) 68.2 (0.4) 67.4 (0.3) 

12 77.5 77.4 (3.8) 78.3 (3.5) 77.6 (1.6) 78.3 (1.3) 78.4 (0.5) 77.4 (0.4) 

        

𝐶 = 9         

1 50.0 50.2 (2.9) 49.8 (2.7) 49.9 (0.8) 50.0 (0.8) 50.0 (0.3) 50.0 (0.3) 
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𝑠  Truth 

𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

2 50.0 50.6 (3.9) 50.0 (3.7) 50.1 (1.4) 50.1 (1.2) 49.9 (0.4) 50.0 (0.4) 

3 60.0 61.0 (3.2) 60.7 (2.7) 60.1 (0.9) 60.1 (0.8) 60.0 (0.3) 60.0 (0.3) 

4 55.0 55.5 (2.6) 55.2 (2.3) 55.0 (0.9) 55.1 (0.8) 55.0 (0.3) 55.1 (0.3) 

5 60.0 60.3 (2.8) 60.8 (2.4) 60.4 (0.9) 60.3 (0.8) 60.1 (0.3) 60.0 (0.3) 

6 70.0 70.4 (2.9) 72.1 (2.6) 70.3 (1.0) 70.2 (0.9) 70.4 (0.3) 70.1 (0.3) 

7 70.0 70.3 (2.9) 71.4 (2.5) 70.2 (1.0) 70.1 (0.9) 70.3 (0.3) 70.1 (0.3) 

8 57.5 57.7 (3.0) 58.1 (2.7) 57.6 (1.1) 57.5 (1.0) 57.6 (0.3) 57.5 (0.3) 

9 65.0 66.0 (3.4) 66.7 (3.3) 65.3 (1.2) 65.1 (1.1) 65.3 (0.4) 65.0 (0.3) 

10 67.5 68.0 (3.3) 68.3 (2.9) 67.7 (1.2) 67.6 (1.1) 67.7 (0.4) 67.5 (0.4) 

11 67.5 68.2 (3.1) 69.6 (3.0) 67.7 (0.9) 67.6 (0.8) 67.9 (0.3) 67.6 (0.3) 

12 77.5 78.0 (3.6) 79.5 (3.1) 78.1 (1.2) 77.9 (1.1) 77.9 (0.4) 77.6 (0.4) 

        

𝐶 = 27         

1 50.0 49.7 (2.7) 49.6 (2.6) 49.9 (0.8) 49.9 (0.8) 50.0 (0.3) 49.9 (0.3) 

2 50.0 49.7 (3.6) 49.8 (3.3) 50.2 (1.1) 50.2 (1.1) 49.9 (0.4) 49.9 (0.4) 

3 60.0 59.7 (2.9) 59.9 (2.8) 60.0 (0.9) 60.1 (0.8) 60.0 (0.3) 60.0 (0.3) 

4 55.0 54.9 (2.6) 54.8 (2.5) 55.0 (0.9) 55.0 (0.9) 55.0 (0.3) 55.0 (0.3) 

5 60.0 59.8 (2.8) 60.3 (2.4) 60.0 (0.8) 60.0 (0.8) 60.0 (0.3) 60.0 (0.3) 

6 70.0 70.4 (2.8) 71.1 (2.7) 70.1 (0.9) 70.1 (0.9) 70.1 (0.3) 70.0 (0.3) 

7 70.0 69.4 (2.9) 70.1 (2.5) 70.2 (0.8) 70.2 (0.8) 70.0 (0.3) 70.0 (0.3) 

8 57.5 57.4 (2.8) 57.7 (2.7) 57.5 (0.9) 57.6 (0.8) 57.5 (0.3) 57.5 (0.3) 

9 65.0 64.6 (3.2) 65.3 (3.0) 65.1 (1.1) 65.2 (1.0) 65.0 (0.3) 65.0 (0.3) 

10 67.5 67.0 (2.8) 67.5 (2.7) 67.7 (1.0) 67.7 (1.0) 67.6 (0.3) 67.6 (0.3) 

11 67.5 67.5 (3.1) 68.2 (2.7) 67.5 (0.9) 67.6 (0.9) 67.6 (0.3) 67.5 (0.3) 

12 77.5 77.2 (3.2) 78.1 (2.9) 77.6 (1.1) 77.7 (1.1) 77.6 (0.4) 77.5 (0.4) 

        

𝐶 = 81         

1 50.0 50.1 (2.7) 50.1 (2.5) 49.9 (0.8) 49.9 (0.7) 50.1 (0.3) 50.0 (0.3) 

2 50.0 50.4 (4.2) 50.3 (4.0) 50.1 (1.2) 50.1 (1.2) 50.0 (0.4) 50.0 (0.4) 

3 60.0 59.7 (2.7) 59.9 (2.5) 59.9 (0.9) 60.0 (0.8) 60.0 (0.3) 60.0 (0.3) 

4 55.0 55.0 (2.7) 55.1 (2.6) 55.0 (0.8) 55.0 (0.8) 55.1 (0.3) 55.1 (0.3) 

5 60.0 60.4 (2.9) 60.5 (2.8) 60.1 (0.8) 60.1 (0.8) 60.1 (0.3) 60.1 (0.3) 

6 70.0 70.0 (2.9) 70.6 (2.7) 70.0 (0.8) 70.1 (0.8) 70.0 (0.3) 70.0 (0.3) 

7 70.0 69.9 (2.7) 70.4 (2.6) 70.0 (0.9) 70.0 (0.8) 70.0 (0.3) 70.0 (0.3) 

8 57.5 57.6 (2.6) 57.9 (2.3) 57.3 (0.9) 57.4 (0.8) 57.5 (0.3) 57.5 (0.3) 

9 65.0 65.1 (3.2) 65.5 (3.0) 65.1 (0.9) 65.1 (0.8) 65.0 (0.3) 65.0 (0.3) 

10 67.5 67.3 (3.0) 67.7 (3.0) 67.5 (1.0) 67.6 (1.0) 67.5 (0.3) 67.6 (0.3) 

11 67.5 67.6 (3.1) 68.2 (3.0) 67.4 (1.0) 67.5 (0.9) 67.5 (0.3) 67.5 (0.3) 

12 77.5 77.6 (3.3) 78.4 (3.4) 77.5 (1.1) 77.7 (0.9) 77.6 (0.4) 77.6 (0.3) 
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𝑠  Truth 

𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

Note: Standard errors in parentheses. 

 

Table G.17. Truth and Estimates of 𝑪𝒐𝒗(𝒙𝒊,𝒘𝒊𝒔) in Simulations with Various 𝑰 and 𝑪 

𝑠  Truth 

𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

MOM 

Semi-

parametr

ic 

Compreh

ensive 

MLE MOM 

Semi-

parametr

ic 

Compreh

ensive 

MLE MOM 

Semi-

parametr

ic 

Compreh

ensive 

MLE 

𝐶 = 2            

1 0.0 0.1 (1.4) 0.2 (1.6) 0.1 (1.3) 0.0 (0.4) 0.0 (0.5) 0.0 (0.4) 0.0 (0.1) 0.0 (0.2) 0.0 (0.1) 

2 0.0 -0.1 (1.8) -0.4 (2.1) -0.1 (1.8) 0.0 (0.6) 0.0 (0.7) 0.1 (0.5) 0.0 (0.2) 0.0 (0.2) 0.0 (0.2) 

3 5.0 5.2 (1.4) 5.0 (1.6) 5.1 (1.1) 5.1 (0.4) 4.8 (0.5) 5.1 (0.4) 5.0 (0.1) 5.1 (0.2) 5.0 (0.1) 

4 2.5 2.6 (1.4) 2.5 (1.7) 2.6 (1.1) 2.5 (0.4) 2.4 (0.5) 2.5 (0.4) 2.5 (0.1) 2.6 (0.2) 2.5 (0.1) 

5 0.0 0.1 (1.4) 0.1 (1.6) 0.1 (1.2) -0.1 (0.5) -0.1 (0.5) 0.0 (0.4) 0.0 (0.1) 0.0 (0.2) 0.0 (0.1) 

6 0.0 0.1 (1.7) 0.1 (2.0) 0.1 (1.3) -0.1 (0.5) -0.1 (0.5) 0.0 (0.4) -0.1 (0.1) 0.0 (0.2) 0.0 (0.2) 

7 5.0 5.0 (1.5) 4.6 (1.8) 4.8 (1.1) 5.0 (0.5) 4.9 (0.5) 5.1 (0.4) 5.0 (0.1) 5.1 (0.2) 5.0 (0.2) 

8 3.8 4.0 (1.3) 3.6 (1.6) 3.9 (1.2) 4.1 (0.4) 3.7 (0.5) 4.0 (0.4) 4.0 (0.1) 4.0 (0.2) 4.1 (0.1) 

9 7.5 8.4 (1.7) 7.7 (1.9) 8.2 (1.4) 8.2 (0.5) 7.5 (0.6) 8.0 (0.5) 8.0 (0.1) 8.0 (0.3) 8.2 (0.1) 

10 8.8 9.2 (1.6) 8.6 (1.8) 9.0 (1.3) 9.0 (0.5) 8.5 (0.5) 9.0 (0.4) 9.0 (0.1) 9.1 (0.3) 9.1 (0.2) 

11 3.8 4.1 (1.8) 3.9 (2.0) 4.0 (1.3) 4.1 (0.5) 3.7 (0.5) 4.0 (0.4) 4.0 (0.1) 4.0 (0.2) 4.1 (0.2) 

12 8.8 9.1 (1.9) 8.5 (2.0) 8.9 (1.3) 9.1 (0.6) 8.6 (0.6) 9.1 (0.5) 9.0 (0.2) 9.1 (0.3) 9.1 (0.2) 

           

𝐶 = 3            

1 0.0 0.0 (1.3) 0.0 (1.4) 0.2 (1.2) 0.0 (0.4) 0.0 (0.5) 0.0 (0.4) 0.0 (0.1) 0.0 (0.2) 0.0 (0.1) 

2 0.0 -0.1 (2.0) -0.3 (2.0) 0.0 (1.9) 0.1 (0.6) 0.0 (0.7) 0.1 (0.6) 0.0 (0.2) 0.0 (0.2) 0.0 (0.2) 

3 5.0 5.0 (1.2) 4.8 (1.3) 5.1 (1.2) 5.0 (0.4) 5.0 (0.5) 5.0 (0.4) 5.0 (0.1) 5.1 (0.2) 5.0 (0.1) 

4 2.5 2.3 (1.4) 2.1 (1.5) 2.4 (1.2) 2.5 (0.4) 2.5 (0.5) 2.5 (0.4) 2.5 (0.1) 2.5 (0.2) 2.5 (0.1) 

5 0.0 -0.2 (1.4) -0.1 (1.6) 0.0 (1.3) 0.0 (0.3) 0.1 (0.4) 0.0 (0.3) 0.0 (0.1) 0.0 (0.2) 0.0 (0.1) 

6 0.0 -0.2 (1.5) -0.1 (1.6) 0.0 (1.3) 0.0 (0.4) 0.1 (0.6) 0.0 (0.4) 0.0 (0.1) 0.0 (0.2) 0.0 (0.1) 

7 5.0 4.9 (1.6) 4.8 (1.8) 5.0 (1.3) 5.0 (0.5) 5.1 (0.6) 5.0 (0.4) 5.0 (0.1) 5.1 (0.2) 5.0 (0.1) 

8 3.8 3.9 (1.4) 3.6 (1.7) 4.0 (1.3) 4.2 (0.4) 3.9 (0.5) 4.1 (0.4) 4.1 (0.1) 3.9 (0.2) 4.0 (0.1) 

9 7.5 7.7 (1.7) 7.0 (1.7) 7.7 (1.4) 8.2 (0.4) 7.6 (0.6) 8.1 (0.4) 8.2 (0.1) 7.9 (0.2) 8.1 (0.1) 

10 8.8 8.7 (1.6) 8.2 (1.6) 8.7 (1.4) 9.2 (0.5) 8.9 (0.7) 9.1 (0.4) 9.1 (0.1) 9.1 (0.2) 9.0 (0.1) 

11 3.8 3.8 (1.5) 3.6 (1.8) 3.9 (1.3) 4.1 (0.4) 3.9 (0.5) 4.0 (0.4) 4.1 (0.1) 4.0 (0.2) 4.0 (0.1) 

12 8.8 8.8 (2.0) 8.4 (1.9) 8.9 (1.6) 9.2 (0.5) 8.8 (0.7) 9.1 (0.5) 9.1 (0.1) 9.0 (0.2) 9.0 (0.1) 

           

𝐶 = 9            

1 0.0 0.0 (1.2) 0.0 (1.3) 0.1 (1.2) 0.1 (0.4) 0.0 (0.4) 0.0 (0.4) 0.0 (0.1) 0.0 (0.1) 0.0 (0.1) 

2 0.0 -0.2 (1.8) -0.1 (1.9) -0.1 (1.9) 0.0 (0.7) 0.0 (0.8) 0.0 (0.7) 0.0 (0.2) 0.0 (0.2) 0.0 (0.2) 
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𝑠  Truth 

𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

MOM 

Semi-
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ic 

Compreh
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MLE MOM 

Semi-

parametr

ic 

Compreh

ensive 

MLE MOM 

Semi-

parametr

ic 

Compreh

ensive 

MLE 

3 5.0 5.1 (1.4) 4.9 (1.4) 5.1 (1.4) 5.0 (0.4) 5.0 (0.4) 4.9 (0.4) 5.0 (0.1) 5.1 (0.1) 5.0 (0.1) 

4 2.5 2.3 (1.3) 2.3 (1.3) 2.4 (1.3) 2.5 (0.4) 2.6 (0.5) 2.5 (0.4) 2.5 (0.1) 2.5 (0.1) 2.5 (0.1) 

5 0.0 0.0 (1.2) -0.1 (1.4) -0.1 (1.1) 0.0 (0.4) 0.0 (0.4) 0.0 (0.3) 0.0 (0.1) 0.0 (0.1) 0.0 (0.1) 

6 0.0 0.1 (1.3) 0.1 (1.4) 0.0 (1.3) 0.0 (0.4) 0.0 (0.5) -0.1 (0.4) 0.0 (0.1) 0.0 (0.2) 0.0 (0.1) 

7 5.0 5.1 (1.1) 5.0 (1.3) 5.2 (1.2) 5.0 (0.4) 5.1 (0.4) 5.0 (0.4) 5.0 (0.1) 5.0 (0.2) 4.9 (0.1) 

8 3.8 4.1 (1.2) 3.7 (1.3) 4.1 (1.2) 4.1 (0.4) 3.9 (0.4) 4.0 (0.4) 4.1 (0.1) 3.8 (0.1) 4.0 (0.1) 

9 7.5 7.9 (1.3) 7.1 (1.4) 7.9 (1.2) 8.2 (0.4) 7.6 (0.5) 8.1 (0.4) 8.2 (0.1) 7.7 (0.1) 8.1 (0.1) 

10 8.8 9.2 (1.3) 8.6 (1.6) 9.3 (1.3) 9.1 (0.4) 8.8 (0.5) 9.0 (0.4) 9.1 (0.1) 8.9 (0.2) 9.0 (0.1) 

11 3.8 4.2 (1.3) 3.8 (1.6) 4.1 (1.3) 4.1 (0.5) 3.8 (0.5) 4.0 (0.4) 4.1 (0.1) 3.9 (0.1) 4.0 (0.1) 

12 8.8 9.1 (1.4) 8.6 (1.7) 9.1 (1.4) 9.1 (0.5) 8.9 (0.5) 9.1 (0.4) 9.1 (0.1) 8.9 (0.2) 9.0 (0.1) 

           

𝐶 = 27            

1 0.0 -0.1 (1.2) -0.1 (1.4) -0.1 (1.2) 0.0 (0.4) 0.0 (0.4) -0.1 (0.4) 0.0 (0.1) 0.0 (0.1) 0.0 (0.1) 

2 0.0 -0.2 (1.9) -0.2 (1.9) -0.3 (1.9) -0.1 (0.6) -0.1 (0.6) -0.2 (0.6) 0.0 (0.2) 0.0 (0.2) -0.1 (0.2) 

3 5.0 5.0 (1.2) 5.0 (1.3) 5.1 (1.2) 5.0 (0.4) 5.0 (0.4) 4.9 (0.3) 5.0 (0.1) 5.0 (0.1) 4.9 (0.1) 

4 2.5 2.8 (1.1) 2.7 (1.2) 2.8 (1.2) 2.4 (0.4) 2.4 (0.4) 2.4 (0.4) 2.5 (0.1) 2.5 (0.1) 2.4 (0.1) 

5 0.0 0.0 (1.1) -0.1 (1.1) -0.1 (1.1) 0.0 (0.4) 0.0 (0.4) -0.1 (0.4) 0.0 (0.1) 0.0 (0.1) -0.1 (0.1) 

6 0.0 0.0 (1.2) 0.0 (1.2) 0.0 (1.2) -0.1 (0.4) -0.1 (0.4) -0.1 (0.4) 0.0 (0.1) 0.0 (0.1) -0.1 (0.1) 

7 5.0 4.9 (1.2) 4.8 (1.4) 4.9 (1.2) 5.0 (0.4) 5.0 (0.5) 5.0 (0.4) 5.0 (0.1) 5.0 (0.1) 4.9 (0.1) 

8 3.8 4.3 (1.3) 3.9 (1.4) 4.3 (1.3) 4.0 (0.4) 3.7 (0.4) 4.0 (0.4) 4.1 (0.1) 3.8 (0.1) 4.0 (0.1) 

9 7.5 8.3 (1.5) 7.3 (1.5) 8.3 (1.4) 8.1 (0.4) 7.5 (0.4) 8.1 (0.4) 8.2 (0.1) 7.5 (0.1) 8.1 (0.1) 

10 8.8 9.3 (1.2) 8.8 (1.4) 9.3 (1.2) 9.1 (0.4) 8.8 (0.5) 9.1 (0.4) 9.1 (0.1) 8.8 (0.1) 9.0 (0.1) 

11 3.8 4.3 (1.2) 3.8 (1.4) 4.3 (1.2) 4.0 (0.4) 3.7 (0.4) 4.0 (0.4) 4.1 (0.1) 3.8 (0.1) 4.0 (0.1) 

12 8.8 9.2 (1.4) 8.8 (1.7) 9.3 (1.4) 9.1 (0.4) 8.8 (0.4) 9.1 (0.4) 9.1 (0.1) 8.8 (0.1) 9.0 (0.1) 

           

𝐶 = 81            

1 0.0 -0.2 (1.1) -0.1 (1.2) -0.2 (1.2) 0.0 (0.4) 0.0 (0.4) -0.1 (0.4) 0.0 (0.1) 0.0 (0.1) 0.0 (0.1) 

2 0.0 -0.1 (1.5) 0.0 (1.6) -0.1 (1.5) 0.0 (0.6) 0.0 (0.6) 0.0 (0.6) 0.0 (0.2) 0.0 (0.2) -0.1 (0.2) 

3 5.0 5.0 (1.3) 5.0 (1.4) 5.0 (1.2) 4.9 (0.4) 5.0 (0.4) 4.9 (0.4) 5.0 (0.1) 5.0 (0.1) 4.9 (0.1) 

4 2.5 2.5 (1.1) 2.5 (1.2) 2.5 (1.1) 2.5 (0.4) 2.5 (0.4) 2.5 (0.3) 2.5 (0.1) 2.5 (0.1) 2.5 (0.1) 

5 0.0 -0.1 (1.2) -0.1 (1.3) -0.2 (1.2) -0.1 (0.4) -0.1 (0.4) -0.2 (0.4) 0.0 (0.1) 0.0 (0.1) -0.1 (0.1) 

6 0.0 -0.2 (1.2) -0.2 (1.3) -0.3 (1.2) 0.0 (0.4) 0.0 (0.5) -0.1 (0.4) 0.0 (0.1) 0.0 (0.1) -0.1 (0.1) 

7 5.0 5.0 (1.2) 4.9 (1.4) 5.0 (1.1) 5.0 (0.4) 5.0 (0.4) 5.0 (0.4) 5.0 (0.1) 5.0 (0.1) 4.9 (0.1) 

8 3.8 4.0 (1.3) 3.6 (1.3) 4.0 (1.3) 4.1 (0.4) 3.8 (0.4) 4.1 (0.4) 4.1 (0.1) 3.8 (0.1) 4.0 (0.1) 

9 7.5 7.9 (1.3) 7.2 (1.5) 7.9 (1.3) 8.1 (0.4) 7.4 (0.4) 8.0 (0.4) 8.2 (0.1) 7.5 (0.1) 8.1 (0.1) 

10 8.8 9.1 (1.3) 8.6 (1.4) 9.1 (1.3) 9.1 (0.4) 8.8 (0.5) 9.0 (0.4) 9.1 (0.1) 8.8 (0.2) 9.0 (0.1) 

11 3.8 4.1 (1.2) 3.7 (1.4) 4.0 (1.2) 4.1 (0.4) 3.8 (0.4) 4.0 (0.3) 4.1 (0.1) 3.8 (0.1) 4.0 (0.1) 

12 8.8 9.0 (1.2) 8.5 (1.4) 9.0 (1.2) 9.1 (0.4) 8.7 (0.5) 9.0 (0.4) 9.1 (0.1) 8.8 (0.1) 9.0 (0.1) 
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Note: Standard errors in parentheses. 

 

Table G.18. Truth and Estimates of 𝑽𝒂𝒓(𝒘𝒊𝒔) in Simulations with Various 𝑰 and 𝑪 

𝑠  Truth 

𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

𝐶 = 2         

1 213 151 (242) 161 (114) 5 (166) 87 (59) 276 (57) 201 (25) 

2 851 733 (388) 762 (185) 613 (201) 668 (119) 1004 (125) 847 (33) 

3 313 236 (233) 135 (94) 104 (179) 83 (56) 391 (66) 203 (25) 

4 238 143 (259) 142 (99) 24 (161) 82 (58) 298 (60) 203 (26) 

5 222 156 (258) 146 (104) 12 (185) 87 (64) 287 (59) 212 (25) 

6 249 202 (282) 185 (107) 35 (189) 136 (69) 358 (76) 237 (23) 

7 322 237 (327) 152 (98) 120 (194) 100 (60) 433 (79) 210 (25) 

8 279 204 (263) 153 (102) 69 (173) 94 (64) 354 (62) 216 (25) 

9 478 459 (388) 193 (115) 287 (227) 148 (75) 639 (98) 259 (25) 

10 529 474 (369) 171 (114) 320 (216) 120 (69) 683 (95) 225 (25) 

11 302 231 (321) 177 (117) 85 (193) 129 (67) 417 (78) 235 (24) 

12 552 509 (446) 240 (121) 332 (241) 162 (78) 757 (123) 242 (24) 

        

𝐶 = 3         

1 213 80 (237) 122 (99) 128 (184) 127 (56) 288 (44) 205 (12) 

2 851 708 (374) 696 (208) 754 (286) 745 (99) 1009 (96) 847 (22) 

3 313 216 (226) 112 (98) 228 (200) 126 (58) 397 (53) 206 (11) 

4 238 104 (255) 127 (98) 143 (184) 120 (57) 314 (47) 207 (11) 

5 222 112 (218) 129 (111) 136 (208) 131 (55) 297 (47) 214 (13) 

6 249 171 (306) 174 (127) 167 (244) 176 (61) 353 (58) 237 (11) 

7 322 227 (337) 134 (102) 244 (228) 141 (57) 423 (64) 210 (12) 

8 279 175 (257) 128 (97) 205 (188) 140 (59) 361 (51) 219 (11) 

9 478 353 (405) 189 (125) 403 (287) 190 (65) 613 (74) 257 (13) 

10 529 374 (365) 154 (98) 465 (285) 153 (59) 671 (86) 224 (13) 

11 302 199 (309) 160 (120) 224 (240) 175 (62) 409 (67) 238 (11) 

12 552 476 (502) 198 (110) 491 (327) 197 (66) 731 (110) 237 (14) 

        

𝐶 = 9         

1 213 125 (219) 129 (107) 230 (67) 196 (24) 240 (20) 212 (8) 

2 851 636 (426) 755 (196) 903 (136) 838 (64) 914 (42) 849 (18) 
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𝑠  Truth 

𝐼 = 100 𝐼 = 1,000 𝐼 = 10,000 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

Semi-

parametric 

Comprehensi

ve MLE 

3 313 206 (229) 112 (96) 338 (79) 195 (27) 342 (23) 211 (9) 

4 238 133 (250) 115 (108) 262 (65) 196 (28) 265 (17) 212 (9) 

5 222 95 (240) 118 (90) 244 (58) 199 (26) 244 (18) 220 (8) 

6 249 111 (297) 157 (100) 291 (85) 220 (27) 279 (24) 245 (8) 

7 322 201 (260) 128 (93) 348 (86) 199 (30) 361 (28) 218 (8) 

8 279 182 (303) 126 (96) 308 (75) 207 (29) 309 (21) 225 (9) 

9 478 320 (321) 171 (100) 510 (117) 241 (33) 532 (37) 261 (9) 

10 529 425 (343) 146 (104) 574 (104) 206 (28) 578 (32) 228 (9) 

11 302 198 (311) 154 (105) 326 (98) 223 (29) 337 (28) 243 (10) 

12 552 402 (368) 181 (106) 596 (145) 221 (26) 617 (49) 245 (9) 

        

𝐶 = 27         

1 213 205 (116) 178 (74) 213 (39) 205 (19) 217 (14) 213 (7) 

2 851 816 (246) 792 (173) 847 (85) 833 (58) 863 (27) 851 (17) 

3 313 310 (147) 187 (71) 308 (45) 200 (23) 315 (17) 212 (8) 

4 238 241 (130) 177 (70) 239 (39) 201 (22) 240 (14) 212 (9) 

5 222 233 (150) 191 (71) 217 (46) 209 (23) 227 (14) 223 (8) 

6 249 261 (193) 211 (70) 255 (61) 235 (24) 251 (24) 248 (8) 

7 322 340 (209) 195 (74) 325 (71) 208 (27) 326 (23) 219 (9) 

8 279 258 (158) 187 (76) 286 (54) 211 (27) 284 (19) 222 (7) 

9 478 518 (321) 235 (83) 473 (101) 241 (24) 484 (31) 254 (9) 

10 529 554 (220) 192 (74) 533 (84) 214 (24) 538 (25) 223 (8) 

11 302 309 (248) 210 (82) 306 (82) 231 (27) 305 (29) 244 (8) 

12 552 563 (312) 200 (70) 571 (118) 237 (27) 561 (40) 243 (9) 

        

𝐶 = 81         

1 213 210 (120) 184 (62) 210 (38) 206 (22) 213 (12) 207 (34) 

2 851 816 (233) 799 (161) 851 (91) 843 (55) 850 (25) 846 (18) 

3 313 321 (142) 196 (72) 312 (45) 206 (25) 312 (17) 211 (7) 

4 238 228 (123) 193 (64) 237 (38) 203 (22) 238 (13) 211 (7) 

5 222 213 (128) 195 (67) 220 (39) 215 (24) 222 (16) 220 (8) 

6 249 247 (184) 230 (77) 248 (65) 237 (21) 249 (24) 246 (8) 

7 322 353 (216) 191 (72) 320 (68) 212 (26) 325 (24) 220 (8) 

8 279 325 (169) 213 (67) 277 (47) 212 (25) 281 (20) 221 (8) 

9 478 496 (248) 219 (77) 487 (100) 248 (25) 476 (34) 250 (8) 

10 529 540 (211) 190 (72) 521 (81) 210 (20) 528 (29) 221 (8) 

11 302 307 (209) 210 (66) 307 (75) 235 (23) 300 (30) 242 (8) 

12 552 562 (276) 206 (66) 549 (117) 237 (24) 551 (40) 243 (7) 

Note: Standard errors in parentheses. 
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Appendix G Reference 

 

Trefethen, Lloyd N., and David Bau. “Numerical Linear Algebra.” Society for Industrial and 

Applied Mathematics, 1997. 

 

H. Fraction of Scale-Use Heterogeneity Explained by General Scale Use 

This appendix details our estimation of the fraction of scale use accounted for by general 

scale use. 

 

H.1. The Measure and the Estimates 

As noted in Section VII.B, we measure the fraction of scale-use variance in CQ 

dimension d explained by general scale use by the R2 from a regression of the mean MMB 

calculated from dimension-d CQs on the mean MMB calculated from all other CQs, excluding 

dimension d. We measure the overall fraction of scale-use heterogeneity explained by general 

scale use as the mean of the dimension-specific R2’s. 

Formally, for each dimension d, we calculate the analytical R2 for the following 

regression equation: 

 

�̂�𝑑,𝑖(ℎ) =  𝛽0 +  𝛽1

1

𝐺 − 1
∑ �̂�𝑘,𝑖(ℎ)

𝐺

𝑘=1,𝑘≠𝑑

+ 𝜍𝑖 , 

 

where, as defined in Section V.C, �̂�𝑘,𝑖(ℎ) denotes the dimension-𝑘 MMB targeting the height ℎ 

for person 𝑖 and 𝐺 denotes the total number of dimensions used. We calculate the analytical R2 

rather than running the empirical analog of this regression because response errors inflate the 

MMBs’ variances. The analytical R2 corrects for this by subtracting from the raw variances the 

response-error variances estimated through a dimension-specific version of the CQ-only MLE. 

We conduct this analysis using two sets of CQs. The first set uses all 60 available 

dimensions in the Bottomless survey (see Appendix A.4 for details). The other set uses the 

subset of 42 (out of the 60) dimensions that correspond to personal and local-public-good SWB 

dimensions; it excludes visual CQs and CQs for non-local-public-good SWB dimensions (see 
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Appendix Table A.4 for the correspondence between each dimension and its respective 

category). 

Table H.1 reports our results with the height used for the MMBs varying between the 

highest and lowest (semi-parametric-method-estimated) means among the four ONS SWBs 

(worthwhileness with the mean of 69.90, and no anxiety with the mean of 54.04). Across both 

MMBs, the mean R2 is more than 55% in the set of CQs with 60 dimensions and more than 75% 

in the set of CQs with 42 dimensions. 

 

Table H.1. Means of Dimension-Specific R2’s 

Dimensions (CQs) Mean R2 MMB Mean 

42 (316 CQs) 75.70% (1.53%) 54.04 

42 (316 CQs) 75.58% (1.53%) 69.90 

60 (388 CQs) 60.03% (1.48%) 54.04 

60 (388 CQs) 56.32% (1.52%) 69.90 

Notes: Sample consists of Bottomless respondents who answered 

all relevant questions on the survey (Obs. = 701). Includes data on 

388 CQs from 60 dimensions, or 316 CQs from the 42 personal 

and local public good dimensions, collected in Bottomless. The 

MMBs are matched to the semi-parametric estimate of the mean 

common-scale SWB of “no anxiety” (54.04), or to the semi-

parametric estimate of the mean common-scale SWB of 

“worthwhileness” (69.90). Standard errors in parentheses. 

 

H.2. An Alternative Measure 

As an alternative measure of the fraction of scale use explained by general scale use, we 

perform principal components analysis (PCA) on the variance-covariance matrix of the 

dimensional MMBs. After correcting for response errors in the variances, the variance-

covariance matrix becomes negative definite. To facilitate the PCA, we substitute the negative 

eigenvalues with zeros, ensuring positive semidefiniteness of the matrix. To the extent that the 

majority of the cross-sectional variation in MMBs can be explained by the first principal 

component, we interpret it as “general” scale use. The relative importance of general scale use 

can be estimated by the contribution of the first principal component to overall scale-use 

variation. 

Here, we run PCA on the response-error-corrected variance-covariance matrices obtained 

above from the two sets of CQs. We calculate PCA loadings for 42 or 60 principal components 
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(depending on the number of dimensions we examine) and the eigenvalue for each principal 

component. In Figure H.1, we plot the proportion of variance explained by the first 10 principal 

components. As before, we vary the MMB height, using the lowest and highest semi-parametric 

common-scale SWB means. In all the panels of Figure H.1, the first principal component 

explains a high proportion (60.1% to 77.0%) of the overall variance in the MMBs. These 

numbers are very close to what we find using the other measure of the fraction of scale use 

explained by general scale use in Section H.1. 

 

Figure H.1. Scree Plots for the First 10 Principal Components 

         A.                                                                          B. 

   

         C.                                                                          D. 

  
Notes: Sample consists of Bottomless respondents who answered all relevant questions on the survey (Obs. = 701). 
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Panels A and B include data on 316 CQs from 42 personal and local public good dimensions, collected in 

Bottomless. In Panel A, the MMBs are matched to the semi-parametric estimate of the mean common-scale SWB 

level of “no anxiety” (54.04), while in Panel B, the MMBs are matched to the semi-parametric estimate of the mean 

common-scale SWB level of “worthwhileness” (69.90). Panels C and D include data on 388 CQs from 60 

dimensions, collected in Bottomless. In Panel C, the MMBs are matched to the semi-parametric estimate of the 

mean common-scale SWB level of “no anxiety” (54.04), while in Panel B, the MMBs are matched to the semi-

parametric estimate of the mean common-scale SWB level of “worthwhileness” (69.90).   
 

 

I. Validation Analyses 

This appendix details validation analyses on our scale-use adjustment methods. The 

underlying premise of these analyses is that, after adjusting for scale-use heterogeneity, 

subjective measures should align more closely with their objective counterparts if the scale-use 

adjustment is performing well. 

 

I.1. Regressing Subjective Measures on Objective Measures 

One validation test of our scale-use correction methods examines the relationship 

between a respondent’s “subjective height” (on the 0-100 scale) and “objective height” (in 

inches, albeit self-reported), as defined in Section VII.A. If scale-use heterogeneity and the 

response errors we model were the only sources of discrepancy and if there were no 

measurement error in objective height, then the scale-use-corrected coefficient from a regression 

of subjective height on objective height, after standardizing both (demeaning and dividing by 

their standard deviations), would be one. In practice, since both premises are imperfect 

approximations (for example, subjective height may be judged in comparison to a reference 

group), we expect the coefficient to be attenuated, but less so after scale-use adjustment than 

before. 

When we regress standardized, unadjusted subjective height on objective height, the 

regression coefficient is 0.49 (SE = 0.04). To create a scale-use-adjusted analog of this 

coefficient, we use our MOM estimator to adjust for scale-use heterogeneity that confounds the 

regression coefficient, and we use our comprehensive MLE to adjust for scale-use heterogeneity 

that biases the standard deviation used in the procedure of standardization. That is, we 

benchmark subjective height, 𝑟𝑖𝑠, using the MMB matching the mean of the common-scale 

subjective height, 𝐸(𝑤𝑖𝑠), and divide the benchmarked rating by the estimated standard deviation 

of the common-scale subjective height. This procedure gives us an estimator of the coefficient 

from a regression of standardized common-scale subjective height on objective height, 𝑥𝑖: 
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𝐶𝑜𝑣 (
𝑟𝑖𝑠 − �̂�𝑖(𝐸(𝑤𝑖𝑠))

√𝑉𝑎𝑟(𝑤𝑖𝑠)
, 𝑥𝑖) = 𝐶𝑜𝑣 (

𝑤𝑖𝑠

√𝑉𝑎𝑟(𝑤𝑖𝑠)
, 𝑥𝑖) = 𝐶𝑜𝑣 (

𝑤𝑖𝑠 − 𝐸(𝑤𝑖𝑠)

√𝑉𝑎𝑟(𝑤𝑖𝑠)
, 𝑥𝑖), 

 

where the first equality follows from the MOM estimator. The resulting estimate is much closer 

to, and statistically indistinguishable from, one: 0.85 (SE = 0.09). 

However, our scale-use adjustment method adjusts for response errors in addition to 

correcting for scale-use heterogeneity, and adjusting for response errors alone would increase the 

regression coefficient by reducing attenuation bias. To isolate the effect of adjusting for scale 

use, we compare the regression coefficient after scale-use adjustment to the regression 

coefficient that is obtained by correcting for measurement error only. To correct for 

measurement error, we model respondent i’s raw rating of SWB question s, 𝑟𝑖𝑠, as the true rating, 

𝑤𝑖𝑠, plus response error, 𝜐𝑖𝑠, that is independent from the true rating and across time: 

 

𝑟𝑖𝑠 = 𝑤𝑖𝑠 + 𝜐𝑖𝑠. 

 

Under this assumption, we can estimate the response-error-corrected standard deviation, 

√𝑉𝑎𝑟(𝑤𝑖𝑠), using the square root of the test-retest covariance of the subjective ratings of height, 

√𝐶𝑜𝑣(𝑟𝑖𝑠1, 𝑟𝑖𝑠2), where 𝑟𝑖𝑠1 and 𝑟𝑖𝑠2 denote the first rating and the retest rating, respectively, 

from two pilot waves of our Baseline surveys (see Appendix A.1 for details). When we apply our 

regression procedure with standardization using the measurement-error-corrected variance 

estimate √𝐶𝑜𝑣(𝑟𝑖𝑠1, 𝑟𝑖𝑠2) (in place of the naïve variance estimate √𝑉𝑎𝑟(𝑟𝑖𝑠)), we find a 

coefficient of 0.62 (SE = 0.06). This coefficient is statistically smaller than the coefficient when 

both scale use and response errors are corrected for (difference = 0.24 with SE = 0.03). 

Looking at subjective and objective measures of weight, we see similar results: the 

regression coefficient from the unadjusted regression is 0.40 (SE = 0.02), compared with 0.50 

(SE = 0.02) after adjusting for only response error, and 0.91 (SE = 0.04) after scale-use 

adjustment. 

As additional validation analyses, we examine four more pairs of subjective and objective 

measures, one each concerning air quality and crime rate and two concerning financial support. 
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Table I.1 summarizes the estimates of the slope coefficients from the subjective-objective 

regressions under no scale-use correction, under only response-error correction, and under our 

scale-use correction. For all the additional subjective-objective pairs we investigate, we 

consistently find that each subjective measure corresponds more closely with its objective 

counterpart after scale-use correction. 

 

Table I.1 Slope Coefficients from Subjective-Objective Regressions 

Subjective Measure  Objective Measure 

Sample 

size 

Regression Coefficient 

No scale-

use 

correction 

Response-

error 

correction 

Scale-use 

correction 

The air in your area not being 

polluted 

Median Air Quality Index 2,810 -0.13 (0.02) -0.19 (0.02) -0.21 (0.03) 

Your living environment not 

being spoiled by crime and 

violence 

Violent crime per 100,000 1,345 -0.09 (0.03) -0.13 (0.04) -0.14 (0.05) 

Financial support for family Log(HH income/sqrt(HH 

size)) 

3,358 0.34 (0.01) 0.40 (0.02) 0.58 (0.02) 

Financial support for family Difficulty paying bills 3,354 -0.49 (0.01) -0.57 (0.02) -0.79 (0.02) 

Rating of height Height 3,358 0.49 (0.04) 0.62 (0.06) 0.85 (0.09) 

Rating of weight Weight 3,358 0.40 (0.02) 0.50 (0.02) 0.91 (0.04) 

Notes:  Subjective measures are from authors’ surveys. Median Air Quality Index is measured by the median Air Quality Index in 

a Metropolitan Statistical Area (MSA), as defined by the U.S. Census Bureau, and comes from the U.S. Environmental Protection 

Agency. Crime data is measured as the rate of violent crime (defined as murder, nonnegligent manslaughter, rape, robbery, and 

aggravated assault) per 100,000 residents in an MSA and comes from the F.B.I.’s “Crime in the United States” report. We mapped 

ZIP Codes (as reported by respondents) to ZIP Code Tabulation Areas (ZCTAs) using the UDS Mapper tool and mapped ZCTAs 

to MSAs. Sample sizes are smaller for the crime and air quality regressions because not all respondents provided location data that 

we were able to map to ZIP codes, and because we were not able to map all ZIP codes to the other data sets. Income, household 

characteristics, height, and weight are self-reported in the Baseline survey demographics. “Difficulty paying bills” comes from the 

Baseline survey question, “During the last 12 months, would you say you had difficulties paying the bills at the end of the 

month?” with these response options: Never, Almost never, Occasionally, Most of the time. For this analysis we coded the 

responses as 0, 1, 2, 3, respectively. All of the subjective and objective measures are standardized. Response-error correction is 

done using test-retest covariances. For all except “Rating of height” and “Rating of weight,” the “test” and “retest” data for the 

Response-error correction column come from the Baseline survey and Block 1 of the Bottomless survey. For “Rating of height” 

and “Rating of weight,” these data come from a pilot survey with 298 respondents (see Appendix A.1 for details). Standard errors 

in parentheses.  

 

I.2. Weaker Correlation Between Objective Measures and CQ Ratings 

Under our assumptions, relative to the subjective measures that are paired with objective 

measures (whose correlations are analyzed above), CQ ratings should be much more weakly 

correlated with the objective measures. 

Table I.2 reports the correlations of all the above subjective and objective measures with 

the mean of our 18 Baseline CQ ratings. A zero correlation with the mean CQ rating cannot be 
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ruled out for four out of the six objective measures (column 2). The other two objective 

measures’ non-zero correlations with the mean CQ rating could be due to possible relationships 

between the objective measures and correlates of scale use, such as demographics. Column 3 

shows that, as hypothesized, relative to the subjective measures, all the objective measures are 

significantly less (positively) correlated with the mean CQ rating. 

 

Table I.2 Correlation Between Mean CQ Rating and Subjective and Objective Measures 

Subjective Measure  Objective Measure 

Sample 

size 

Correlation with Mean CQ Rating 

(1) (2) (3) 

Subjective 

Measure 

Objective 

Measure Difference 

The air in your area not being 

polluted 

Median Air Quality Index 2,810 0.16 (0.01) 0.01 (0.02) 0.15 (0.03) 

Your living environment not being 

spoiled by crime and violence 

Violent crime per 100,000 1,345 0.10 (0.02) -0.01 (0.03) 0.11 (0.03) 

Financial support for family Log(HH income/sqrt(HH size)) 3,358 0.23 (0.02) 0.01 (0.02) 0.21 (0.02) 

Financial support for family Difficulty paying bills 3,354 0.23 (0.02) -0.05 (0.02) 0.28 (0.03) 

Rating of height Height 3,358 0.23 (0.02) 0.00 (0.02) 0.23 (0.02) 

Rating of weight Weight 3,358 0.20 (0.02) -0.12 (0.01) 0.32 (0.02) 

Notes: Subjective measures are from authors’ surveys. See notes to Table I.1 for definitions and sources of the objective measures. The subjective and 

objective measures are not standardized. Standard errors in parentheses. 

 

J. Additional Tables and Figure 

This appendix contains tables and a figure that complement the discussion in the paper. 

Figure J.1 shows that our distributional assumptions for the scale-use parameters and the 

response errors provide a reasonable fit between the real and simulated data. 
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Figure J.1. Density Plots of �̂�𝒊,𝑶𝑳𝑺, �̂�𝒊,𝑶𝑳𝑺, and Standard Deviations of OLS Residuals 

 

 

 

 

 

Table J.1 reports the differences in coefficients across our three scale-use adjustment 

methods and the naïve estimator for demographic regressions, with standard errors calculated 

from our bootstrap samples. The results are largely similar across the methods. 
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Table J.1. Cross-Method Differences in Coefficients From Life Satisfaction and “No 

Anxiety” Regressions 

 Life Satisfaction  No Anxiety 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

Demographics 

No scale-use 

correction 
relative to 

Comprehensiv

e MLE 

MOM 
relative to 

No scale-use 

correction 

Semi-
parametric 

relative to 

MOM 

Comprehen

sive MLE 
relative to 

Semi-

parametric  

No scale-use 

correction 
relative to 

Comprehensiv

e MLE 

MOM 
relative to 

No scale-use 

correction 

Semi-
parametric 

relative to 

MOM 

Comprehen

sive MLE 
relative to 

Semi-

parametric 

Demeaned age/10 -0.2 

(0.2) 

0.4 

(0.2) 

-0.1 

(0.2) 

-0.1 

(0.3) 

 -0.3 

(0.2) 

0.6††† 

(0.2) 

-0.3 

(0.2) 

0.0 

(0.3) 

Demeaned age2/100 0.2 
(0.1) 

-0.1 
(0.1) 

0.1 
(0.1) 

-0.2 
(0.2) 

 0.2 
(0.1) 

-0.2† 
(0.1) 

0.1 
(0.1) 

-0.1 
(0.2) 

Log(HH income) -0.2 

(0.3) 

-0.1 

(0.3) 

0.3 

(0.4) 

-0.1 

(0.4) 

 -0.7†† 

(0.3) 

0.5† 

(0.2) 

0.5 

(0.4) 

-0.2 

(0.5) 

Unemployed -1.3 
(0.6) 

-1.0 
(0.6) 

1.8 
(1.1) 

0.5 
(1.0) 

 -2.2†† 
(0.7) 

0.7 
(0.5) 

1.0 
(1.1) 

0.4 
(1.1) 

Employed part-time -0.6 

(0.4) 

0.1 

(0.6) 

-0.8 

(0.7) 

1.3 

(0.9) 

 -1.3† 

(0.6) 

0.8 

(0.5) 

-1.1 

(0.6) 

1.6 

(0.7) 

Out of labor 

force/other 
-1.5† 

(0.5) 

0.3 

(0.7) 

0.2 

(0.9) 

0.9 

(1.0) 

 -1.7†† 

(0.6) 

1.6†† 

(0.5) 

0.7 

(0.8) 

-0.7 

(0.9) 

Married, not 

separated 
1.0† 
(0.4) 

-0.8 
(0.5) 

-0.4 
(0.5) 

0.2 
(0.6) 

 1.7††† 
(0.5) 

-1.6††† 
(0.4) 

0.0 
(0.6) 

0.0 
(0.7) 

Ever divorced 0.2 

(0.6) 

-0.1 

(0.6) 

-0.8 

(0.7) 

0.7 

(1.0) 

 -0.5 

(0.6) 

0.2 

(0.5) 

-1.1 

(0.8) 

1.4 

(0.9) 

Have 1 child 0.4 
(0.4) 

0.4 
(0.6) 

0.0 
(0.6) 

-0.8 
(0.7) 

 -0.5 
(0.5) 

0.5 
(0.5) 

-0.2 
(0.5) 

0.3 
(0.7) 

Log(HH size) 0.3 

(0.4) 

-0.5 

(0.5) 

1.4 

(0.5) 

-1.1 

(0.7) 

 1.0 

(0.5) 

-1.2†† 

(0.4) 

0.9 

(0.6) 

-0.7 

(0.8) 

College grad 0.6 

(0.4) 

-0.8 

(0.4) 

0.3 

(0.6) 

-0.1 

(0.7) 

 1.0 

(0.4) 

-1.1†† 

(0.4) 

0.3 

(0.6) 

-0.2 

(0.6) 

Male -0.1 
(0.3) 

-0.7 
(0.4) 

0.3 
(0.5) 

0.4 
(0.5) 

 -0.1 
(0.4) 

-0.4 
(0.3) 

-0.5 
(0.5) 

0.9 
(0.5) 

Religious attendance 

(0 to 5, 'Never' to 

'More than once a 

week') 

0.5†† 

(0.1) 

-0.4†† 

(0.1) 

0.0 

(0.2) 

0.0 

(0.2) 

 0.9††† 

(0.1) 

-0.9††† 

(0.1) 

0.0 

(0.2) 

0.0 

(0.2) 

Asian -0.4 
(0.7) 

1.5 
(0.8) 

0.2 
(1.0) 

-1.3 
(1.1) 

 -0.7 
(0.8) 

1.5† 
(0.7) 

0.2 
(1.0) 

-1.0 
(1.1) 

N 3,355 3,355 3,355 3,355  3,355 3,355 3,355 3,355 

Notes: The differences of the coefficient estimates between the four methods: no scale-use correction, MOM, semi-parametric and 

comprehensive MLE. Bootstrap standard errors are reported in parentheses. Sample is 3,358 Baseline respondents who passed QC. Daggers 

signal false-discovery-rate (FDR) significance levels using the Benjamini-Hochberg procedure applied to the 29 p-values in each column 

separately (variables included in FDR correction also include additional race, employment status, region, and day of week indicators; “Other” 

categories in race and employment status are excluded—we do not pose or report hypothesis tests for them); †††, ††, and † indicate significance 

at the 1-percent, 5-percent, and 10-percent levels, respectively. Standard errors in parentheses. 
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Table J.2 reports estimates of the covariances of the 4 U.K. ONS SWB responses before 

and after general scale-use adjustment by the comprehensive MLE estimator, suggesting that the 

scale-use adjustment makes a significant difference to the estimates of the covariances. 

 

Table J.2. Estimates of 𝑪𝒐𝒗(𝒘𝒊𝒔, 𝒘𝒊𝒔′) Before and After Scale-Use Adjustment 

Before Scale-Use Adjustment Life Satisfaction Happiness Worthwhileness No Anxiety 

Life Satisfaction 661.8 (14.5) 538.7 (14.4) 453.8 (13.7) 403.5 (13.7) 

Happiness 538.7 (14.4) 605.6 (14.0) 427.9 (13.0) 409.1 (12.9) 

Worthwhileness 453.8 (13.7) 427.9 (13.0) 554.6 (14.7) 333.8 (13.2) 

No Anxiety 403.5 (13.7) 409.1 (12.9) 333.8 (13.2) 830.0 (13.0) 

     

After Scale-Use Adjustment     

Life Satisfaction 273.6 (11.1) 264.6 (9.8) 233.1 (9.4) 212.8 (10.3) 

Happiness 264.6 (9.8) 263.6 (9.5) 225.8 (8.7) 224.8 (9.5) 

Worthwhileness 233.1 (9.4) 225.8 (8.7) 222.9 (9.9) 173.9 (9.0) 

No Anxiety 212.8 (10.3) 224.8 (9.5) 173.9 (9.0) 370.4 (12.4) 

Notes: Scale-use adjustment by comprehensive MLE. Standard errors in parentheses. 

 

Table J.3 shows that adjusting for general scale use reduces the estimates of the variances 

of the 33 SWB questions by around 50%. 

 

Table J.3. SWB Variance Estimates 

 (1) (2) (3) (4) 

SWB 

No scale-use 

correction 

Transitory-error 

correction 

Semi-

parametric 

Comprehensive 

MLE 

Satisfaction 661.8 (14.5) 512.8 (16.0) 318.8 (26.6) 273.6 (11.1) 

Happiness 605.6 (14.0) 456.3 (16.2) 259.9 (25.2) 263.6 (9.5) 

Worthwhileness 554.6 (14.7) 401.8 (15.2) 199.8 (27.2) 222.9 (9.9) 

No Anxiety 830.0 (13.0) 496.0 (17.4) 446.4 (26.0) 370.4 (12.4) 

Ladder 505.6 (11.0) 370.8 (13.0) 123.1 (20.7) 160.5 (8.2) 

Well-being of Your Family 363.2 (10.9) 227.0 (11.6) 66.0 (24.1) 121.6 (7.4) 

Family Happiness 414.7 (13.5) 270.6 (12.5) 120.0 (24.7) 144.0 (8.8) 
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 (1) (2) (3) (4) 

SWB 

No scale-use 

correction 

Transitory-error 

correction 

Semi-

parametric 

Comprehensive 

MLE 

Physical Health 435.3 (11.5) 313.5 (12.1) 103.6 (21.5) 106.3 (6.6) 

Mental Health 642.0 (12.5) 489.1 (12.6) 320.8 (29.2) 239.5 (8.9) 

Sense of Purpose 674.9 (15.1) 504.9 (16.9) 310.9 (25.2) 253.4 (11.1) 

Sense of Control 601.0 (13.5) 424.9 (15.8) 229.8 (23.0) 226.8 (10.0) 

Having People 628.5 (15.3) 430.8 (15.4) 304.7 (27.0) 249.9 (13.5) 

Not Lonely 802.7 (15.4) 501.4 (16.6) 488.5 (30.7) 359.3 (14.0) 

No Anger 663.9 (13.4) 350.2 (13.0) 339.7 (23.8) 291.4 (13.3) 

No Sadness 755.8 (12.5) 458.7 (17.8) 409.2 (26.4) 328.2 (11.8) 

No Stress 763.6 (11.2) 490.2 (12.9) 393.0 (24.3) 330.0 (10.5) 

No Worry 772.5 (12.3) 498.4 (14.1) 385.0 (23.4) 338.5 (10.9) 

Good Person 266.8 (9.9) 175.9 (6.80) 41.6 (25.4) 72.3 (6.4) 

Possibilities 580.5 (13.3) 365.9 (15.9) 223.7 (23.4) 205.9 (9.0) 

Time 557.2 (10.8) 332.5 (13.0) 204.4 (25.5) 196.3 (9.4) 

Social Status 716.1 (12.7) 535.9 (17.5) 317.7 (22.8) 251.1 (9.7) 

Safety 277.5 (9.1) 149.1 (8.17) -17.3 (22.8) 65.9 (5.6) 

Financial Support 807.4 (15.2) 588.1 (22.2) 430.8 (27.9) 271.6 (11.2) 

Not Unemployed 951.2 (15.0) 523.5 (20.0) 660.1 (32.4) 476.0 (14.9) 

Eat 322.0 (12.3) 168.5 (9.28) 59.3 (23.2) 56.9 (4.5) 

Housing Comfort 400.8 (12.7) 260.8 (13.0) 118.0 (26.9) 107.2 (9.2) 

Enjoyment 562.9 (13.7) 432.6 (15.0) 236.0 (24.3) 243.3 (9.5) 

Knowledge Skills 271.0 (7.5) 177.1 (8.26) -31.6 (19.8) 66.4 (5.0) 

Local Safety 463.4 (14.2) 201.5 (13.2) 204.1 (26.0) 131.1 (14.1) 

Local Air 497.6 (12.1) 232.6 (13.5) 218.6 (24.3) 163.7 (11.9) 

Citizen Influence 645.2 (10.9) 361.8 (13.3) 236.9 (17.5) 252.6 (10.1) 

Citizen Trust 556.1 (9.3) 342.1 (13.2) 183.4 (19.8) 186.9 (8.3) 

Culture Being Honored 514.5 (10.6) 250.9 (11.8) 178.9 (23.6) 177.2 (10.2) 

Notes: Column (2) is calculated based on our Baseline survey and the repeat SWB questions in 
Block 1 of our follow-up Bottomless survey. Sample size for Column (2) is N = 2,472. Standard 

errors in parentheses. 

 

Table J.4 decomposes the raw variances of the four U.K. SWB questions into three 

components: common-scale SWB (our estimate of 𝑉𝑎𝑟(𝑤𝑖𝑠)), general scale use (our estimate of 

𝑉𝑎𝑟(𝛼𝑖 + 𝛾 + 𝛽𝑖(𝑤𝑖𝑠 − 𝛾)) − 𝑉𝑎𝑟(𝑤𝑖𝑠)), and response errors (our estimate of 𝑉𝑎𝑟(𝑟𝑖𝑠) −

𝑉𝑎𝑟(𝛼𝑖 + 𝛾 + 𝛽𝑖(𝑤𝑖𝑠 − 𝛾))). Similar to what is implied by the estimates in Table J.3, the 

estimates in Table J.4 show that variance in common-scale SWB accounts for around 43% of the 
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variance in reported SWB. Heterogeneity in scale-use accounts for around 12%, and response-

error variances account for the remaining about 45%. 

 

Table J.4. Decomposition of Response Variance 

SWB 𝑉𝑎𝑟(𝑟𝑖𝑠) 

Fraction due to 

common-scale SWB 

Fraction due to 

general scale use 

Fraction due to 

response errors 

Life Satisfaction 661.8 (14.5) 0.41 (0.01) 0.11 (0.01) 0.47 (0.01) 

Happiness 605.6 (14.0) 0.44 (0.01) 0.12 (0.01) 0.44 (0.01) 

Worthwhileness 554.6 (14.7) 0.40 (0.01) 0.13 (0.01) 0.47 (0.01) 

No Anxiety 830.0 (13.0) 0.45 (0.01) 0.12 (0.00) 0.44 (0.01) 

Notes: Fraction due to common-scale SWB is calculated through 𝑉𝑎𝑟(𝑤𝑖𝑠)/𝑉𝑎𝑟(𝑟𝑖𝑠), fraction due to 

general scale use through [𝑉𝑎𝑟(𝛼𝑖 + 𝛾 + 𝛽𝑖(𝑤𝑖𝑠 − 𝛾)) − 𝑉𝑎𝑟(𝑤𝑖𝑠)]/𝑉𝑎𝑟(𝑟𝑖𝑠), and fraction due to errors 

through [𝑉𝑎𝑟(𝑟𝑖𝑠) − 𝑉𝑎𝑟(𝛼𝑖 + 𝛾 + 𝛽𝑖(𝑤𝑖𝑠 − 𝛾))]/𝑉𝑎𝑟(𝑟𝑖𝑠). Relevant moments of 𝑤𝑖𝑠 are estimated by 

the comprehensive MLE method. Standard errors in parentheses. 

 

Tables J.5 and J.6 are the full versions of Tables 3 and 6, respectively, including 

demographic coefficients that were omitted in the abbreviated versions. 

 

Table J.5. Regression of Mean and Standard Deviation of CQs, and �̂�𝒊 and �̂�𝒊, on 

Demographics (Full Version) 
        

 (1) (2)  (3) (4) 

Demographics Mean of CQs Std. Dev. of CQs  �̂�𝑖 �̂�𝑖 

Demeaned age/10 -0.7††† 

(0.2) 

0.2††  

(0.1) 

 -0.51†† 

(0.16) 

0.01† 

(0.01) 

(Demeaned age)2/100 0.2†† 

(0.1) 

-0.1 

(0.1) 

 0.13 

(0.08) 

-0.01†† 

(0.004) 

Log(HH income) -0.7††† 

(0.2) 

0.4††† 

(0.1) 

 -0.23 

(0.24) 

0.05††† 

(0.01) 

Unemployed -1.3††† 

(0.5) 

1.0††† 

(0.3) 

 0.05 

(0.51) 

0.13††† 

(0.02) 

Employed part-time -1.1† 

(0.5) 

0.7†† 

(0.3) 

 -0.50 

(0.53) 

0.06††† 

(0.02) 

Out of labor force/other -2.1 

(0.5) 

0.7 

(0.3) 

 -1.09 

(0.54) 

0.12 

(0.02) 

Married, not separated 1.9††† -0.7†††  1.24†† -0.06††† 
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(0.4) (0.2) (0.39) (0.02) 

Ever divorced -0.4 

(0.5) 

0.4 

(0.3) 

 -0.07 

(0.56) 

0.03 

(0.02) 

Have 1 child -0.5 

(0.4) 

0.2 

(0.3) 

 -0.45 

(0.48) 

0.00 

(0.02) 

Log(HH size) 1.4††† 

(0.4) 

-0.8††† 

(0.2) 

 0.89 

(0.43) 

-0.05†† 

(0.02) 

College grad 1.2††† 

(0.4) 

-0.9††† 

(0.2) 

 0.94† 

(0.37) 

-0.02 

(0.01) 

Male 0.3 

(0.3) 

-0.1 

(0.2) 

 0.54 

(0.34) 

0.02 

(0.01) 

Religious attendance (0 to 5, 'Never' 

to 'More than once a week') 

1.1††† 

(0.1) 

-0.4††† 

(0.1) 

 0.66††† 

(0.10) 

-0.04††† 

(0.004) 

Asian -1.5† 

(0.7) 

0.2 

(0.4) 

 -1.53 

(0.73) 

0.00 

(0.02) 

Democrat 1.3††† 

(0.3) 

-0.7††† 

(0.2) 

 0.80 

(0.36) 

-0.04††† 

(0.01) 

Obese -1.2††† 

(0.4) 

0.4 

(0.2) 

 -1.16†† 

(0.38) 

0.004 

(0.02) 

Black/African American -0.3 

(0.7) 

0.8† 

(0.4) 

 -0.23 

(0.73) 

0.01 

(0.03) 

Hispanic/Latino/Spanish 1.0 

(0.7) 

-0.3 

(0.4) 

 0.66 

(0.74) 

-0.03 

(0.03) 

Other non-white -0.7 

(0.6) 

-0.02 

(0.5) 

 -1.19† 

(0.72) 

-0.05 

(0.03) 

Northeast 0.2 

(0.5) 

0.2 

(0.3) 

 0.11 

(0.55) 

-0.01 

(0.02) 

West -0.3 

(0.4) 

0.4 

(0.3) 

 -0.49 

(0.48) 

-0.01 

(0.02) 

South -0.2 

(0.4) 

0.6† 

(0.3) 

 0.04 

(0.39) 

0.02 

(0.02) 

High population density 0.5 

(0.4) 

-0.3 

(0.2) 

 0.20 

(0.43) 

-0.03 

(0.02) 

Sunday 1.4 

(1.0) 

0.4 

(0.5) 

 1.03 

(1.04) 

-0.03 

(0.04) 

Monday 0.6 

(0.5) 

-0.2 

(0.3) 

 0.35 

(0.54) 

-0.03 

(0.02) 

Tuesday 0.4 

(0.7) 

-0.4 

(0.4) 

 0.12 

(0.75) 

-0.02 

(0.03) 

Thursday 0.7 

(0.6) 

-0.1 

(0.4) 

 0.55 

(0.62) 

-0.02 

(0.03) 

Friday 1.0 

(0.5) 

-0.6 

(0.3) 

 0.44 

(0.57) 

-0.05 

(0.02) 

Saturday 1.1 

(0.9) 

-1.0† 

(0.5) 

 0.64 

(0.93) 

-0.04 

(0.03) 
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Obs. 3,358 3,358  3,358 3,358 

Notes: The dependent variables are constructed from each individual’s responses to the 18 Baseline CQs. �̂�𝑖 and �̂�𝑖 are the intercept 

and slope, respectively, from regression of respondent 𝑖’s 18 Baseline CQ ratings onto the population means of those 18 ratings. The 

sample is 3,358 Baseline respondents who passed quality control. Daggers signal false-discovery-rate (FDR) significance levels using 

the Benjamini-Hochberg procedure applied to the 29 p-values in each column separately (variables included in FDR correction also 

include additional race and employment status indicators, as well as indicators for region, day of week, political party, obesity, and 

population density; “Other” categories in race and employment status are excluded from FDR correction—we do not pose or report 

hypothesis tests for them); †††, ††, and † indicate significance at the 1-percent, 5-percent, and 10-percent levels, respectively. Standard 

errors in parentheses. 

 

Table J.6. Life Satisfaction and “No Anxiety” Regression and General Scale-Use 

Adjustment (Full Version) 

 Life Satisfaction  No Anxiety 

 (1) (2) (3) (4)  (5)  (6) (7) (8) (9)  (10) 

Demographics 

No scale-use 

correction MOM 

Semi-

parametric 

Compre-

hensive 

MLE 

 

MMB 

(66.90)  

No scale-

use 

correction MOM 

Semi-

parametric 

Compre-

hensive 

MLE 

 

MMB 

(54.04) 

Demeaned 

age/10 

1.3††† 

(0.4) 

1.7††† 

(0.4) 

1.6††† 

(0.5) 

1.6††† 

(0.4) 

 -0.4 

(0.2) 

 3.6††† 

(0.5) 

4.2††† 

(0.4) 

3.9††† 

(0.5) 

3.9††† 

(0.4) 

 -0.6††† 

 (0.2) 

Demeaned 

age2/100 

1.7††† 

(0.2) 

1.7††† 

(0.2) 

1.7††† 

(0.3) 

1.6††† 

(0.2) 

 0.1 

(0.1) 

 1.1††† 

(0.3) 

0.9††† 

(0.3) 

1.0††† 

(0.3) 

0.9††† 

(0.3) 

 0.2† 

 (0.1) 

Log(HH income) 5.1††† 

(0.7) 

5.1††† 

(0.6) 

5.4††† 

(0.8) 

5.3††† 

(0.6) 

 0.1 

(0.3) 

 2.0†† 

(0.8) 

2.4†† 

(0.8) 

2.9††† 

(0.9) 

2.7††† 

(0.8) 

 -0.5† 

 (0.2) 

Unemployed -8.3††† 

(1.6) 

-9.2††† 

(1.5) 

-7.5††† 

(1.5) 

-7.0††† 

(1.3) 

 1.0 

(0.6) 

 -7.7††† 

(2.0) 

-7.0††† 

(1.8) 

-6.0††† 

(2.0) 

-5.6††† 

(1.7) 

 -0.7 

 (0.5) 

Employed part-

time 

-2.9† 

(1.3) 

-2.8† 

(1.4) 

-3.6† 

(1.6) 

-2.3 

(1.2) 

 -0.1 

(0.6) 

 -5.9††† 

(1.5) 

-5.1††† 

(1.5) 

-6.2††† 

(1.5) 

-4.6††† 

(1.4) 

 -0.8 

 (0.5) 

Out of labor 

force/other 

-6.0††† 

(1.4) 

-5.6††† 

(1.5) 

-5.4††† 

(1.7) 

-4.5††† 

(1.3) 

 -0.3 

(0.6) 

 -6.0††† 

(1.7) 

-4.4†† 

(1.7) 

-3.7 

(1.9) 

-4.3†† 

(1.6) 

 -1.6 

 (0.5) 

Married, not 

separated 

9.7††† 

(1.0) 

8.9††† 

(1.0) 

8.5††† 

(1.3) 

8.6††† 

(1.0) 

 0.8 

(0.4) 

 4.7††† 

(1.4) 

3.1†† 

(1.3) 

3.1† 

(1.5) 

3.1†† 

(1.2) 

 1.6††† 

(0.4) 

Ever divorced 2.3 

(1.3) 

2.2 

(1.3) 

1.4 

(1.6) 

2.1 

(1.2) 

 0.1 

(0.6) 

 -0.1 

(1.7) 

0.2 

(1.7) 

-0.9 

(1.9) 

0.5 

(1.7) 

 -0.2 

 (0.5) 

Have 1 child 4.1††† 

(1.0) 

4.5††† 

(1.0) 

4.6††† 

(1.3) 

3.8††† 

(0.9) 

 -0.4 

(0.6) 

 1.1 

(1.2) 

1.6 

(1.2) 

1.4 

(1.4) 

1.7 

(1.1) 

 -0.5 

 (0.4) 

Log(HH size) -2.1† 

(1.1) 

-2.7†† 

(1.1) 

-1.3 

(1.3) 

-2.4††† 

(1.0) 

 0.5 

(0.5) 

 -1.2 

(1.2) 

-2.4† 

(1.1) 

-1.5 

(1.4) 

-2.2 

(1.1) 

 1.2†† 

 (0.4) 

College grad 2.1† 

(1.0) 

1.3 

(0.9) 

1.6 

(1.2) 

1.5 

(0.9) 

 0.8 

(0.4) 

 3.3††† 

(1.0) 

2.2† 

(1.0) 

2.5† 

(1.2) 

2.3† 

(1.0) 

 1.1†† 

 (0.4) 

Male 0.1 

(0.9) 

-0.6 

(0.9) 

-0.3 

(1.1) 

0.1 

(0.9) 

 0.7 

(0.4) 

 5.7††† 

(1.0) 

5.2††† 

(1.0) 

4.8††† 

(1.2) 

5.7††† 

(1.0) 

 0.4 

 (0.3) 

Religious 

attendance (0 to 

5, 'Never' to 

'More than once 

a week') 

1.9††† 

(0.2) 

1.6††† 

(0.2) 

1.5††† 

(0.3) 

1.5††† 

(0.2) 

 0.4†† 

(0.1) 

 1.8††† 

(0.3) 

0.9††† 

(0.3) 

1.0†† 

(0.4) 

1.0††† 

(0.3) 

 0.9††† 

 (0.1) 

Asian 0.0 

(1.9) 

1.5 

(1.8) 

1.7 

(2.1) 

0.4 

(1.8) 

 -1.5 

(0.8) 

 2.5 

(2.0) 

4.0† 

(1.9) 

4.2 

(2.2) 

3.2 

(1.9) 

 -1.5† 

 (0.7) 
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 Life Satisfaction  No Anxiety 

 (1) (2) (3) (4)  (5)  (6) (7) (8) (9)  (10) 

Demographics 

No scale-use 

correction MOM 

Semi-

parametric 

Compre-

hensive 

MLE 

 

MMB 

(66.90)  

No scale-

use 

correction MOM 

Semi-

parametric 

Compre-

hensive 

MLE 

 

MMB 

(54.04) 

Democrat 0.2 

(0.8) 

-0.3 

(0.7) 

-0.8 

(0.9) 

-0.1 

(0.8) 

 0.5 

(0.4) 

 -0.1 

(1.0) 

-1.2 

(0.9) 

-0.5 

(1.0) 

-1.1 

(0.9) 

 1.1†† 

(0.3) 

Obese -4.0††† 

(1.1) 

-2.9†† 

(1.1) 

-2.3 

(1.3) 

-2.9††† 

(0.9) 

 -1.1 

(0.4) 

 -4.6††† 

(1.3) 

-3.5†† 

(1.3) 

-3.0† 

(1.3) 

-3.8††† 

(1.2) 

 -1.2††† 

(0.4) 

Black/African 

American 

1.6 

(1.7) 

1.8 

(1.7) 

1.3 

(2.0) 

1.6 

(1.6) 

 -0.2 

(0.8) 

 7.3††† 

(2.0) 

7.6††† 

(1.9) 

6.8††† 

(2.2) 

7.2††† 

(1.8) 

 -0.3 

(0.7) 

Hispanic/Latino/

Spanish 

0.5 

(1.6) 

0.1 

(1.6) 

-1.7 

(2.1) 

-0.5 

(1.6) 

 0.4 

(0.8) 

 2.5 

(1.8) 

1.6 

(1.8) 

0.2 

(2.2) 

1.2 

(1.9) 

 0.9 

(0.7) 

Other non-white -0.3 

(1.7) 

1.2 

(1.6) 

2.0 

(1.9) 

0.5 

(1.6) 

 -1.5† 

(0.8) 

 2.7 

(2.2) 

3.6 

(2.0) 

6.2† 

(2.6) 

3.1 

(2.1) 

 -0.9 

(0.7) 

Northeast 1.3 

(1.3) 

1.3 

(1.3) 

1.5 

(1.6) 

0.9 

(1.2) 

 0.1 

(0.6) 

 0.9 

(1.6) 

0.7 

(1.5) 

0.8 

(1.8) 

0.6 

(1.4) 

 0.2 

(0.5) 

West 2.9† 

(1.3) 

3.5†† 

(1.3) 

3.0 

(1.6) 

3.0†† 

(1.2) 

 -0.6 

(0.5) 

 -0.3 

(1.6) 

0.2 

(1.5) 

-0.2 

(1.8) 

0.5 

(1.4) 

 -0.4 

(0.4) 

South 1.6 

(0.9) 

1.4 

(0.9) 

0.7 

(1.2) 

1.3 

(0.9) 

 0.2 

(0.4) 

 0.5 

(1.2) 

0.6 

(1.2) 

0.5 

(1.4) 

0.7 

(1.1) 

 -0.1 

(0.4) 

High population 

density 

-2.6† 

(1.1) 

-2.6† 

(1.1) 

-2.8 

(1.3) 

-2.6†† 

(1.0) 

 -0.03 

(0.5) 

 -0.2 

(1.2) 

-0.6 

(1.3) 

-0.7 

(1.5) 

-1.0 

(1.2) 

 0.4 

(0.4) 

Sunday -2.6 

(2.9) 

-3.4 

(2.9) 

-3.3 

(3.4) 

-4.5 

(2.8) 

 0.8 

(1.2) 

 -4.5 

(3.7) 

-5.7 

(3.6) 

-6.0 

(3.9) 

-5.7 

(3.6) 

 1.2 

(1.0) 

Monday -1.3 

(1.6) 

-1.4 

(1.4) 

-0.7 

(1.8) 

-1.0 

(1.4) 

 0.2 

(0.6) 

 -3.3† 

(1.4) 

-3.8†† 

(1.4) 

-4.4†† 

(1.7) 

-2.8† 

(1.4) 

 0.5 

(0.5) 

Tuesday 1.9 

(1.7) 

2.0 

(1.7) 

3.6 

(2.0) 

1.8 

(1.6) 

 -0.04 

(0.8) 

 0.7 

(1.9) 

0.5 

(1.9) 

1.5 

(2.2) 

0.9 

(1.7) 

 0.3 

(0.7) 

Thursday -1.8 

(1.8) 

-2.3 

(1.7) 

-1.6 

(2.1) 

-2.0 

(1.6) 

 0.4 

(0.7) 

 -2.4 

(1.8) 

-3.0 

(1.8) 

-3.6 

(2.0) 

-2.2 

(1.7) 

 0.7 

(0.6) 

Friday -0.5 

(1.6) 

-0.6 

(1.4) 

-1.2 

(1.8) 

-1.1 

(1.4) 

 0.1 

(0.7) 

 -1.3 

(1.7) 

-2.0 

(1.7) 

-3.2 

(2.1) 

-1.4 

(1.6) 

 0.7 

(0.5) 

Saturday -2.2 

(2.2) 

-2.5 

(2.2) 

-2.7 

(2.5) 

-2.7 

(2.1) 

 0.4 

(1.0) 

 -1.0 

(2.2) 

-1.9 

(2.0) 

-3.5 

(2.4) 

-1.3 

(2.0) 

 0.9 

(0.9) 

Obs. 3,358 3,358 3,358 3,358  3,358  3,358 3,358 3,358 3,358  3,358 

Notes: The sample is 3,358 Baseline respondents who passed quality control. Dependent variables for columns (5) and (10) are MMBs, matched to 

the semi-parametric estimates of Life Satisfaction (66.90) and No Anxiety (54.04) means, respectively. Daggers signal false-discovery-rate 

significance levels using the Benjamini-Hochberg procedure applied to the 29 p-values in each column separately. See Table J.5 notes for 

description of FDR correction procedure and significance levels. Standard errors in parentheses. 
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